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FA S T T R A C K PA P E R

On the applicability of the frozen flux approximation in core flow
modelling as a function of temporal frequency and spatial degree
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S U M M A R Y
The secular variation of the geomagnetic field is due to flow of molten iron in the Earth’s
core. One can invert for the flow at the core-surface, assuming that the magnetic field is
frozen into the core fluid. The validity of the frozen flux approximation (FFA) depends on the
scale length of the magnetic field and the period of core motions. A first-order quantitative
assessment can be made by solving the induction equation for a spherical conductor oscillating
in an ambient magnetic field. The period, at which the FFA holds, strongly decreases with
increasing spherical harmonic degree of the ambient field. For degrees smaller than five, the
flux of the ambient magnetic field can be considered as frozen-in for periods of more than a
thousand years. For ambient magnetic fields of spherical harmonic degree 10 and higher, the
FFA still holds up to periods of about a hundred years. However, the real situation in the core
could be more complex if the field cannot be assumed as ambient but is generated by the flow
itself.
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1 I N T RO D U C T I O N

With a new generation of high-accuracy satellite magnetic missions
in low-Earth orbit, there is a revived interest in inferring core-surface
flow from observed time variations of the geomagnetic field (Hulot
et al. 2002; Voorhies 2004; Eymin & Hulot 2005; Holme & Olsen
2006). An intriguing application of core flow modelling is that it
may improve the forecast of the secular variation by advecting the
present geomagnetic field forward in time (Maus, Silva & Hulot
2008).

Central to core-surface flow inversions is the assumption that
magnetic flux is carried along with the core fluid as if it were
frozen in. This is equivalent to neglecting magnetic diffusion. With
further simplifying assumptions, one can then invert for a surface
flow explaining the observed changes in the radial component of
the geomagnetic field at the core–mantle boundary. The frozen flux
approximation (FFA) was first used by Roberts & Scott (1965) for
core-surface flow inversions. Using scaling relations, they argued
that the length scale of the core field (assumed 1000 km) divided
by the velocity of core flow (assumed 1 mm s−1) gives a period of
30 yr, which is small compared with the free decay timescale of
core fields (order of 10 000 yr).
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Bloxham & Jackson (1991) reviewed further scaling arguments
and discussed possibilities of testing the FFA on real data. Studying
periodic magnetic field variations for a horizontal core-surface flow
above a convective volume flow, Braginsky & Le Mouel (1993)
found that an inversion adopting the FFA provides an estimate of the
vertical average of the horizontal velocity in the top layer. Gubbins
(1996) proposes a formalism to include diffusion in core-surface
flow mapping from geomagnetic observations, cautioning, however,
that this exacerbates the non-uniqueness of the inverse problem.
Gubbins & Kelly (1996) and Love (1999) address the importance
of the timescale of the flow, pointing out that a steady flow driving
a steady geodynamo could not be determined by adopting the FFA.
The validity of the FFA has also been investigated in numerical
dynamo simulations by Roberts & Glatzmaier (2000), Rau et al.
(2000) and Amit et al. (2007). Although the remoteness of the
parameter regimes from the real Earth is of some concern, the
results imply that the FFA is useful to some extent in recovering core
surface flow. In summary, these studies seem to indicate that the FFA
is justified when relating core flow and geomagnetic field variations
at short enough timescales and large enough spatial scales. The
present study is aimed at clarifying these dependencies on a simple
model.

The geomagnetic field is a superposition of contributions of dif-
ferent scale length, as can be described by a spherical harmonic
expansion. By comparing a spherical harmonic coefficient with
its secular variation, one obtains an estimate of the period of the
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corresponding field variations (Hulot & Le Mouël 1994). Char-
acteristic periods are of the order of thousands of years for the
lowest degrees, decreasing to decades for degrees 10 and higher.
From the perspective of geomagnetic field modelling, it would be
valuable to know up to what periods the FFA holds for a given
spherical harmonic degree of the field. Here, I propose a simple
first-order quantitative assessment by solving the induction equa-
tion for a spherical conductor oscillating in an ambient magnetic
field of spherical harmonic degree � and order m. As expected, the
percentage of advected field is found to increase with conductivity,
decrease with the oscillation period, and decrease with the spherical
harmonic degree of the field.

The solutions of the induction equation in a spherical conductor
are, of course, well known and have been given, for example, by
Lamb (1883), Chapman & Bartels (1940) and Bullard (1949). In
particular, the equations given by Parkinson & Hutton (1989, Chap-
ter 2.3) could be adopted to the present purpose by introducing the
appropriate formal analogies. Instead, a simple derivation of the
solution in Backus’ notation (Backus et al. 1996) is provided here.

2 S O LU T I O N O F T H E I N D U C T I O N
E Q UAT I O N

In the following, the induction equation shall be solved for a simple
Earth-like situation to obtain a first-order quantitative assessment
of the expected error made in adopting the FFA. The model is that
of a uniform core performing whole-body rotational oscillations
in an arbitrary ambient magnetic field. The induction equation for
a uniform spherical conductor separates into toroidal and poloidal
parts. The toroidal field is confined to the conductor; so, we are only
interested in the poloidal part.

2.1 Differential equation

Following the notation of Backus et al. (1996) the poloidal magnetic
field can be written as

B(r, t) = ∇ × �p(r, t), (1)

where � is the surface curl and p(r, t) is a poloidal field scalar that
depends on location r and time t. Then the induction equation for
the poloidal field within the sphere (Backus et al. 1996, 5.4.13) is

∂t p(r, t) = η∇2 p(r, t), (2)

where ∂t denotes the temporal derivative and η = 1/μ0σ , with
permeability of vacuum μ0 and constant conductivity σ . Expanding
p(r, t) into spherical harmonics (Backus et al. 1996, p. 197) gives

p(r, t) =
∞∑

�=1

�∑
m=−�

pm
� (r, t)βm

� (ϑ, ϕ), (3)

with spherical harmonic coefficients pm
� (r, t) and spherical har-

monic basis functions βm
� (ϑ, ϕ), using polar coordinates with radius

r, colatitude ϑ and longitude ϕ. The following derivations are valid
for any desired normalization of the spherical harmonic basis. In-
serting the spherical harmonic representation (3) into the induction
eq. (2) and further using

∇2 = ∂2
r + 2

r
∂r − �(� + 1)

r 2
(4)

yields a differential equation for the spherical harmonic coefficients
of the poloidal field scalar as

∂t pm
� (r, t) = η

[
∂2

r + 2

r
∂r − �(� + 1)

r 2

]
pm

� (r, t). (5)

2.2 Model

Consider a homogeneous, conducting sphere in an ambient mag-
netic field which is constant in time. If the sphere is at rest, the
magnetic field will (eventually) permeate the entire sphere. Now
let us rotate the sphere back and forth with some frequency ω. It
is advisable to solve the induction problem for a reference frame
comoving with the material body. If the amplitude of the rotational
oscillations is small compared with the scale length of the spatial
magnetic field variations, the variation of the magnetic field for
a comoving observer is linearly related to the longitudinal varia-
tion. Since the basis functions βm

� (ϑ, ϕ) have a eimϕ longitudinal
dependence, we then have

δ
[

pm
� (r, t)βm

� (ϑ, ϕ)
] = impm

� (r, t)βm
� (ϑ, ϕ) δϕ. (6)

For the longitudinal variation due to rotational oscillation we can
now assume

δϕ = δ0e−iωt , (7)

where δ0 is the amplitude of the rotational oscillation in degrees or
radians. The apparent time variations of the ambient field, as seen
by an observer on the sphere, are therefore given by

e pm
� (r, t)βm

� (ϑ, ϕ) = imδ0e−iωt
0 pm

�

( r

a

)�

βm
� (ϑ, ϕ), (8)

where a is the radius of the sphere, e pm
� (r, t) denotes the poloidal

scalar of the external field seen in the comoving frame and 0 pm
� are

the corresponding constant coefficients of the ambient field in the
inertial frame.

2.3 Boundary conditions

The time varying external field, as seen in the comoving frame,
induces toroidal currents in the conducting sphere. In the comoving
frame, these currents can be interpreted as preventing the external
field variations from penetrating into the sphere. The success of
this response depends on the conductivity of the sphere. For a per-
fect conductor, the induced magnetic field completely cancels the
inducing field inside of the sphere.

In the inertial frame, the secondary field can be interpreted as
the advected part of the ambient field. For a perfect conductor, the
entire field is advected back and forth in the oscillation, and the
field remains constant inside the sphere. The interesting question of
course is: what happens for an intermediate conductor?

Returning to the comoving frame, the total magnetic field ex-
ternal to the sphere can be regarded as the superposition of the
ambient source field e pm

� (r, t)βm
� (ϑ, ϕ) and the secondary induced

field i pm
� (r, t)βm

� (ϑ, ϕ) with sources inside the sphere. Note that
both are time-varying and do not have to be in-phase. Outside of the
sphere, the ambient and induced fields fulfill Laplace’s equation and
therefore have radial behaviour

e pm
� (r, t)βm

� (ϑ, ϕ) = e pm
� (t)

(
r

a

)�

βm
� (ϑ, ϕ) (9)

i pm
� (r, t)βm

� (ϑ, ϕ) = i pm
� (t)

(
a

r

)�+1

βm
� (ϑ, ϕ), (10)

where a is the radius of the sphere. In the following section, we seek
a solution pm

� (r, t)βm
� (ϑ, ϕ) inside of the sphere. On the boundary,

this solution has to match the sum of the ambient and induced
fields. Furthermore, the radial derivative has to be continuous at the
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surface of the sphere (Backus et al. 1996, eq. 5.3.26). This gives
two boundary conditions

pm
� (a, t) = e pm

� (t) + i pm
� (t) (11)

r∂r pm
� (r, t)|r=a = � e pm

� (t) − (� + 1) i pm
� (t) (12)

2.4 Solution inside of the sphere

The poloidal field scalar inside of the sphere has to fulfill the dif-
ferential eq. (5) which can be solved using the ansatz

pm
� (r, t) = Ae−iωt (κr )−

1
2 J�+ 1

2
(κr ), (13)

where A and κ are complex constants and J�+ 1
2

are Bessel func-
tions of the first kind (Gradshteyn & Ryzhik 1994). Then the radial
derivative is

r∂r pm
� (r, t) = Ae−iωt r∂r (κr )−

1
2 J�+ 1

2
(κr ) (14)

= Ae−iωt

[
−1

2
(κr )−

1
2 J�+ 1

2
(κr ) + (κr )

1
2 ∂κr J�+ 1

2
(κr )

]
.

(15)

Using Gradshteyn & Ryzhik (1994, 8.472.1), the radial derivative
of a Bessel function can be expressed as

∂κr J�+ 1
2
(κr ) = J�− 1

2
(κr ) − � + 1

2

κr
J�+ 1

2
(κr ). (16)

Inserting (16) into (15) gives

r∂r pm
� (r, t) = Ae−iωt

[
(κr )

1
2 J�− 1

2
(κr ) − (� + 1)(κr )−

1
2 J�+ 1

2
(κr )

]
.

(17)

Using (13) and (17) for the left sides in the boundary conditions
(11) and (12) then gives two equations

Ae−iωt (κa)−
1
2 J�+ 1

2
(κa) = e pm

� (t) + i pm
� (t), (18)

Ae−iωt
[
(κa)

1
2 J�− 1

2
(κa) − (� + 1)(κa)−

1
2 J�+ 1

2
(κa)

]

= � e pm
� (t) − (� + 1) i pm

� (t), (19)

which can be combined to eliminate Ae−iωt as

κa J�− 1
2
(κa) i pm

� (t) =
[
−κa J�− 1

2
(κa) + (2� + 1)J�+ 1

2
(κa)

]

× e pm
� (t). (20)

Using the relation (Gradshteyn & Ryzhik 1994, 8.471.1),

(2� + 1)J�+ 1
2
(κa) =

[
κa J�− 1

2
(κa) + κa J�+ 3

2
(κa)

]
, (21)

we then obtain the complex transfer function

i pm
� (t)

e pm
� (t)

=
J�+ 3

2
(κa)

J�− 1
2
(κa)

. (22)

This function has a modulus and a phase. Here, only the modulus,
relating the amplitudes of the ambient and induced fields, is of
interest. Note that the amplitude A does not appear in this equation,
meaning that the transfer function is independent of m, δ0, and 0 pm

� ,
as long as m �= 0 and the oscillation amplitude δ0 is small compared
with the longitudinal wavelength of the ambient field.

Now we still need to find the value of κ , which is obtained by
inserting the ansatz (13) into the differential eq. (5), giving

[
∂2

r + 2

r
∂r − �(� + 1)

r 2
+ iω

η

]
(κr )−

1
2 J�+ 1

2
(κr ) = 0, (23)

which can be rearranged to[
∂2

κr + 2

κr
∂κr +

(
iω/η

κ2
− �(� + 1)

(κr )2

)]
(κr )−

1
2 J�+ 1

2
(κr ) = 0.

(24)

Considering that the functions z− 1
2 J�+ 1

2
(z) fulfill the spherical

Bessel equation (Abramowitz & Stegun 1972, 10.1.1)[
∂2

z + 2

z
∂z +

(
1 − �(� + 1)

z2

)]
z− 1

2 J�+ 1
2
(z) = 0, (25)

it follows that

κ = ±
√

iω/η = ±√
iωμ0σ (26)

= ±eπ/4√ωμ0σ, (27)

where the transfer function (22) takes on identical values for the
positive and the negative values of κ . The parameter κ corresponds
to the parameter k in the related solution of Gubbins (1996, eq. 15).
In the classical electromagnetic induction problem (Parkinson &
Hutton 1989, Chapter 2), the parameter κ is known as the
propagation constant.

3 R E S U LT S A N D D I S C U S S I O N

From the transfer function (22), we can now infer the ratio of the
induced to the inducing field. If the ratio is low, the core motions
fail to transport the magnetic flux. For a ratio close to unity, on
the other hand, most of the field is advected and the FFA holds.
For our simple model, the percentage of advected field depends on
only four parameters: conductivity σ , core radius a, motion period
2π/ω and spherical harmonic degree n of the ambient field. The
percentage of advected flow does not depend on the strength of
the ambient field. It also does not depend on the amplitude of the
rotational oscillation and the order m of the ambient magnetic field,
provided that m �= 0 and the amplitude of the rotational oscillation
is small compared with the longitudinal wavelength of the ambient
field. The latter condition is necessary because a larger amplitude
of the motions would mean that the conductor passes through sev-
eral peaks and troughs of the ambient field, which corresponds to a
higher oscillation frequency. This situation leads to the mathemati-
cal complications pointed out by Bullard (1949, p. 434).

The percentage of advected field as a function of core motion
period is plotted in Fig. 1 for different spherical harmonic degrees
of the ambient field. In this, a core conductivity of 3 × 105 S m−1

is assumed. It is seen that the FFA holds well for a low-degree
magnetic field for core motions with periods up to about 1000 yr.
For ambient magnetic fields of degree 10 and higher, the field can
still be assumed as frozen-in for periods up to around 100 yr. At
these higher degrees, however, an additional complication arises in
core flow inversions due to the masking of the main field by the
crustal field at degrees higher than 13. Interaction between the flow
and the unknown higher-degree core field contributes significantly
to the observed secular variation at smaller degrees (Hulot et al.
1992). The resulting ambiguity caused by main field truncation has
also been confirmed in experiments to recover core flow from geo-
dynamo simulations (Rau et al. 2000; Roberts & Glatzmaier 2000;
Amit et al. 2007). In practice, errors due to main field truncation
could dominate over uncertainties caused by the adoption of the
FFA.
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Figure 1. Percentage of advected field as a function of core motion period for different degrees of the ambient field, assuming a core conductivity of
3 × 105 S m−1.

To the first approximation given by our simple model, the FFA ap-
pears justified in core flow inversions, considering the characteristic
time periods of the observed secular variation. This interpretation
is challenged by Love (1999) who argues that the geomagnetic field
is generated by a predominantly steady dynamo, where advection
of the field by steady flow is balanced by diffusion. This steady flow
does not generate time variations of the magnetic field and is there-
fore invisible in the usual frozen flux inversions. He further argues
that cross-coupling between the steady and time varying velocity
and field terms would make it impossible to even infer the shorter
periods of the flow. In terms of our simple model, which assumes
an imposed ambient field, this scenario corresponds to the presence
of core motions with long periods for which the FFA does not hold
(right-hand side in Fig. 1). Since the contributions at different peri-
ods are additive, it would still be possible to invert for shorter period
variations of the flow, even in the presence of an invisible steady
flow. The situation may, however, be different when the magnetic
field cannot be considered as ambient but is actually generated by
the flow.
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