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Summary

Mapping the gravity and the magnetic field at the Earth’s surface continues to be one of the
most efficient ways to unravel subsurface structure and lithology. However, the interpretation
of potential field data is complicated by the inherent non-uniqueness of the corresponding
inverse problem, in the sense that completely different subsurface source distributions may
give rise to the same field at the Earth’s surface. In this situation a statistical approach
can be helpful. Central to the statistical methods is a characterization of spatial variability
of the fields and their sources by a spatial power spectrum. This power spectrum is useful
in two ways, either as an estimated output, or as an a prior: input. In the first sense, the
power spectrum estimated from gravity and magnetic data can be used to identify different
types of sources (Chapter 2), estimate maximum (Chapter 3) and minimum (Chapters 4-6)
source depth, and identify data noise levels (Chapter 7). In the reverse sense, the presumed
true power spectrum of the field or its sources may serve as an additional input in an
inversion (Chapter 7) and can act as a guide to an efficient parametrization of a model

space (Chapter 8).

Before discussing these methods and their applications, I define a 2D spatial power spec-
trum and derive its respective estimators in plane and spherical coordinates (Chapter 1). A
conveniently defined spatial power spectrum is independent of the coordinate system and,
to avoid mis-interpretation, has a flat spectrum for spatially uncorrelated white noise. In
contrast, the spherical harmonic coefficient spectrum used in geomagnetism is incompatible
between spheres of different radii and has an upward sloping white spectrum. To become
independent of the spherical radius, the spherical spectrum is sometimes divided by the
wavenumber in geodetic studies. Here, I propose a spherical spectrum which has a flat white
spectrum and is compatible with the azimuthally averaged spectrum commonly used in plane
coordinates. An interesting aside is that the new magnetic vector spectrum no longer creates
the incorrect impression of a white noise field at the core-mantle boundary. I also derive a
relationship for the estimation of the magnetic vector spectrum from total intensity data.
Tests on synthetic and real data confirm the compatibility and demonstrate the utility of
the various estimators. Using these estimators, power spectra can be compared not only
in shape, but also in absolute terms, regardless of spherical radii, grid sizes and sampling

intervals.



With the above definitions, the spatial power spectrum can be estimated globally from
spherical harmonic coefficients, as well as locally from regional grids. In a study under-
taken with Chris Tarlowski of the Australian Geological Survey Organisation (AGSO), we
compare global spherical harmonic gravity and magnetic power spectra with their regional
counterparts in Chapter 2. The global gravity spectrum has a bend at wavelengths of 1000 -
2000 km. Local high resolution free air gravity grids provide independent evidence for this
bend. Most likely, it separates static from dynamically supported gravity anomalies. Turning
to the magnetic field, we compare the global spherical harmonic magnetic power spectrum
with local spectra estimated from continental aeromagnetic compilations, finding that the
continental crustal magnetic field is significantly stronger than the global average. This
could be due to the different thickness of the magnetized layer. Indeed, a depth extent of
30 km for continental magnetization versus 10 km for the global average would explain the

discrepancy.

The effect of the limited depth extent of the crustal magnetization on the magnetic
field is further analyzed in Chapter 3. The Earth’s crust is magnetized down to the Curie
temperature depth at about 10 km to 50 km. This limited depth extent of the crustal mag-
netization is discernible in the power spectra of magnetic maps of South Africa and Central
Asia. At short wavelengths the power increases as rapidly towards longer wavelengths as ex-
pected for a self-similar magnetized crust with unlimited depth extent. Above wavelengths of
around 100 km the power starts increasing less rapidly, indicating the absence of deep seated
sources. To quantify this effect the theoretical power spectrum due to a slab carved out of a
self-similar magnetization distribution is derived. This model power spectrum matches the
power spectra of South Africa and Central Asia for a self-similarity parameter of 3.5 < 5 < 4
and Curie temperature depths of 15 to 40 km.

Chapter 4 provides the theory for the high resolution mapping of source parameters using
a spectral model which has been shifted to the space domain for improved performance.
Model variograms describe the spatial variability of magnetic and gravity data in the sapce
domain. Variogram analysis can be utilized to map intensity, depth and scaling exponent
(self-correlation) of the source. In previous statistical methods the measured data were
gridded, transformed to the wavenumber domain, and their power spectrum was analyzed
using a spectral model. To avoid the loss and distortion of information during gridding and
wavenumber domain transform, I transform the spectral model to the space domain, instead.
Variograms are the appropriate space domain counterparts of magnetic and gravity power
spectra. The variogram of the field above a self-similar half-space model is governed by
three parameters: intensity, depth and scaling exponent. These source parameters can be
mapped with high resolution and accuracy by fitting model variograms directly to magnetic

and gravity line data variograms.

In collaboration with the helicopter group of BGR Hannover, this new variogram
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analysis method has been applied to a number of synthetic and real magnetic data

sets (Chapters 5 and 6). The geomagnetic field over sedimentary basins is very sensitive

to variations in basement depth. Therefore, magnetic surveys are widely used to map base-
ment topography in petroleum and groundwater exploration. We use variogram analysis as
a more accurate alternative to the conventional power spectral methods. Data variograms
are computed directly from the aeromagnetic flight line data. To estimate depth, the data
variograms are compared with the model variograms derived in Chapter 4 for a range of
source depths. Variogram analysis makes maximum use of the short wavelength magnetic
signal, which is the key to the resolution of shallow basement topography. In Chapter 5
we map the basement topography of the Omaruru Alluvial Plains in Namibia. A compar-
ison with EM resistivities and drilling information confirms the accuracy, but also shows
the limitations of variogram analysis depth estimation. In a second study (Chapter 6), we
further test the accuracy and resolution of the variogram analysis method on synthetic and
real data. Synthetic magnetic flight line data are generated for basement models of idealized
geological setups. Comparing variogram depths of the data with true model depths shows
that variogram depths are accurate and unbiased as long as the data analysis window is
larger than 10 times the depth to be estimated. However, basement features smaller than
this window size are not resolved. We investigate the trade-off between window size and
lateral resolution by comparing variogram depth with drilled basement depth in the Kuiseb
Dune Area, Namibia. For this difficult data set the optimum window size is more than 20
times the depth to be resolved. Arguably, accuracy and lateral resolution of depth would
have been better if the main survey lines had followed the dune valleys and more tie lines had
been flown. A provocative conclusion from our study is that one should consider arranging
survey lines in a regular mesh, instead of the current practice of flying a dense set of parallel
main lines and only a few perpendicular tie lines. Flying a regular mesh would optimize the

retrieval of depth information per line-km surveyed.

Turning to the second sense in which a power spectrum may be used, the presumed power
spectrum of the gravity field is utilized to constrain the smoothness of geoid solutions from
satellite altimeter data (Chapter 7). The ocean geoid can be inferred from the topography
of the mean sea surface. Satellite altimeters transmit radar pulses and determine the return
travel time to measure sea surface height. The ERS-1 altimeter stacks 51 consecutive radar
reflections on-board the satellite to a single waveform. Tracking the time shift of the wave-
form gives an estimate of the distance to sea surface. In a study together with Derek Fairhead
and Chris Green of GETECH (University of Leeds), we retrack the ERS-1 radar travel times
using a model which is focused on the leading edge of the waveforms. While earlier methods
regarded adjacent waveforms as independent statistical events, we invert a whole sequence of
waveforms simultaneously for a spline geoid solution. Smoothness is controlled by spectral

constraints on the spline coefficients. Our geoid solutions have average power spectra equal
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to the expected power spectrum of the true geoid. The coherence of repeat track solutions
indicates a spatial resolution of 31 km, as compared to 41 km resolution for the European
Space Agency’s ERS-1 Ocean Product. While the resolution of the latter deteriorates to
47 km for wave heights above 2 m, our geoid solution maintains its resolution of 31 km for
rough sea. Retracking altimeter waveform data and constraining the solution by a spectral
model leads to a realistic geoid solution with significantly improved along-track resolution.

In view of the new Qrsted and upcoming Champ satellite missions, discussions with Nils
Olsen and Peter Weidelt on the presumed spatial distribution and radial decay of field-
aligned electric currents have motivated an investigation on the efficient parametrization
of the magnetic field at satellite altitude (Chapter 8). An efficient parametrization of the
magnetic field is essential for the processing and analysis of satellite magnetic data. We use
two poloidal scalars for the internal and external magnetic fields and one toroidal scalar for
the magnetic field due to field-aligned electric currents. While the radial behavior of the
poloidal scalars is well known, we derive a radial expansion for the toroidal scalar, based
on statistical features of a dipolar system of field-aligned currents. The upcoming situation
with multiple magnetic field measuring satellites in orbit may permit the resolution of further
field parameters. For this purpose, we propose an additional poloidal field scalar for toroidal
currents within the shell of measurements, and further higher order toroidal magnetic field
scalars for the poloidal currents. This optimum choice of parameters should provide the key
for improved internal and external magnetic field models.

In summary, statistical methods are important tools for the processing and interpretation
of gravity and magnetic data. The straight-forward analysis of spatial power spectra and
their variogram counterparts provides information on source parameters and noise levels. In
the inversion of measured data, the inclusion of power spectra and variograms as statistical
constraints on the model parameters leads to physically meaningful solutions. While statis-
tical techniques are sometimes regarded as inaccurate and unreliable, I show here that they
complement other techniques in gravity and magnetic mapping, leading to significant gains

in resolution and accuracy.



Chapter 1

Compatible spherical harmonic and
plane power spectra

There is an increasing interest in spherical harmonic whole Earth models of various geo-
physical parameters. An interesting characteristic of these models is their spatial power
spectrum (Kaula, 1967) which may reveal important properties of the underlying geophys-
ical processes. For example, the Mauersberger /Lowes geomagnetic spectrum (Lowes, 1974;
Langel and Estes, 1982) clearly indicates the dominance of the magnetic core field at long
wavelengths and the crustal magnetic field at short wavelengths. Attempts have been made
to infer the spectrum of the crustal magnetic field from statistical models of the crustal mag-
netization (Jackson, 1996; McLeod, 1996; Maus et al., 1997). McLeod and Coleman (1980)
derived the power spectra of magnetic field vector components on average great circles (cir-
cles with the same diameter as the sphere) from the spherical harmonic coefficients of the
magnetic potential. O’Brian et al. (1999) invert these relations to estimate the Mauers-
berger/Lowes spectrum from vector component aeromagnetic survey lines over the oceans.
Spherical harmonic gravity potential spectra have been estimated from gravity anomalies on
land (Forsberg, 1984), and from satellite altimetry data of the ocean geoid (Rapp, 1986).
In a study on the decay of topography and geoid spectra of the Earth, Rapp (1989) uses a
spectral density obtained from dividing the usual spherical harmonic coefficient spectrum by
the wavenumber k. This quantity is independent of the spherical radius and was originally
defined by Turcotte (1987) to compare topography and geoid spectra of the Earth, Moon,
Venus and Mars. Corresponding azimuthally summed cross-spectral densities for spherical
and plane coordinates were defined by McKenzie (1994) to study the admittance between
topography and gravity on Earth and Venus. The admittance Z(k) is defined as the trans-
fer function in §(k) = Z(k)h(k), where § and h are the Fourier transforms of gravity and
topography, respectively, and k is the wavevector.

The spherical harmonic power spectrum can be seen as the global average of a local spa-
tial power spectrum. This local power spectrum is a continuous quantity which is defined

a priori, hence, it exists independently of any measurements that may have been made and
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independently of the chosen coordinate system. It is not expected to be stationary over
the sphere, as the intermediate to short wavelength variability of a geophysical parameter
usually changes with location, e.g., between oceans and continents. In this sense, the global
spherical harmonic spectrum may serve as an estimate of the local spatial spectrum and
can be compared with spectrum estimates from local grids to study regional variability in
a global context (Chapter 2). For this purpose, I define spherical harmonic and plane spec-
trum estimators which are compatible, regardless of coordinate system orientation, spherical
radius, grid size, and sampling interval. While the plane spectrum estimator resembles the
commonly utilized plane azimuthally averaged ”radial” spectrum (Spector and Grant, 1970),
the new spherical spectrum estimator differs from the usual spherical harmonic coefficient
spectrum of degree £ by a factor 771 (2£+ 1)~! r2. T also define a magnetic field vector spec-
trum which can be estimated from total intensity data under the assumption of a poloidal
and primarily dipolar field. The validity and accuracy of the theory is demonstrated in
tests, where spherical harmonic spectra are compared with plane spectra of one and the

same function.

1.1 Spatial power spectrum

Let v be the scalar geophysical parameter we are interested in. For example, this could be
the topographic altitude, gravity acceleration, or the total intensity of the magnetic field. We
would like to quantify the spatial variability of ¢/ on some arbitrarily curved, but reasonably
smooth surface. From a statistical point of view, ¥(z1, x2) is a scalar random field (Yaglom,
1986). Then, ¥ (z1, z2) has an expected value E{t¢(z1,z2)}, and a variance

E{[(21, m2) — E{tp(21, 22)}]*} = E{p(x1,22)*} — E{tb(21,32)}". (L.1)

The quantity E{(z1,x2)?} shall be referred to as the expected power. This expected power
can be written as an integral of the 2D power spectral density P(k1, k2) over the 2D wavenum-
ber domain (k1, ks). Using established terms of the applied literature, I shall refer to the
power spectral density P(kq, ko) as a power spectrum or just spectrum. Then the expected

power is related to the spectrum as

E{d(z1,25)?} = /_O:o /_o:o P(ky, ko) dk: dks (1.2)
- /0°° /027r P(kcos a, ksin @) da k dk, (1.3)

where k = \/k? + k2 is the wavenumber measured in radians per km, and « is the azimuth. In
contrast to the wavenumber, the azimuth depends on the orientation of the local coordinate
system. There are three possibilities to define a reduced power spectrum P(k) which is only
a function of the wavenumber and independent of the azimuth. They are listed in Table 1.1.

The azimuthally integrated spectrum
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TABLE 1.1: Three coordinate independent spatial spectra are defined in the first column
and their relation to the expected power is given in the second column. The first spectrum
slopes upward for white noise, while the third is impractical. Remains the second which is
advocated here.

definition of P;(k) relative to P(ky, ko) E{(z1,12)°} type
2 o)
P (k) k { P(k cos a, k sin o) do OfPl(k) dk az. integr.
2 o0
Py(k) o= Of P(kcos o, ksin @) do { Py(k) 2rk dk | az. av. 2D
2w oo 00
Py(k) | 5= Of _f P(kcosa — kb sin o, ksin a + kb cos o) dkh da | 2 g Py(k)dk | az. av. 1D
27
P (k) = k/ P(kcos o, ksin @) do (1.4)
0

is popular in whole Earth studies. Its major shortcoming is that its white noise spectrum

slopes upward. A better option, therefore, is to average over the azimuth as in

1

P2(k) = %

27
/ P(k cos a, ksin a) da. (1.5)
0

This azimuthally averaged 2D spectrum is popular in local studies. As a third possibility,
one could use the expected 1D spectrum for an arbitrarily oriented profile. Introducing a

coordinate system (', z}), rotated counter-clockwise by the angle « as
(x1,22) = (2] cos a — o} sin a, ' sin a + ), cos ), (1.6)

the slice theorem (Parker and O’Brien, 1997, eq. 12) gives the spectrum P, (k) for a profile
oriented in the z!-direction as

Po) = |

Py (ky, k) dis (1.7)
= / P(k} cosa — kg sin o, kf sin o + ki, cos a) dk,. (1.8)
Averaging over all of the possible profile directions « gives

1 2n  poo
P3(k) = Py /0 /_Oo P(kcosa — kiysina, ksin o + ki cos ) dkl, dov. (1.9)

However, this azimuthally averaged 1D spectrum is impractical to estimate. Thus, defini-
tion (1.5) turns out to be the best option for a coordinate independent spectrum.

For magnetic power spectra it has advantages to use the geometric mean, instead of the
arithmetic mean, in the azimuthal average of eq. (1.5) (see Chapter 3, p. 42). However,
this complicates the normalization of the spectra according to eq. (1.3). Therefore, this

possibility shall not be pursued further here.
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With definition (1.5) the expected power can be written as
E{v(z1,25)?) = / Py(k) 2k dk. (1.10)
0

Values of P,(k) carry the units [1)]> km?, which are the units of a 2D power spectral density
(PSD). The azimuthally averaged power spectrum P,(k) can be estimated from data given
in any coordinate system and thus provides a universally comparable measure for the spatial
variability of 1. From one location to another, this spatial spectrum can vary gradually, in
the sense that the wavelength of variations in P,(k) must be long compared with 27/k. A
full formal definition of non-stationary spectra can be found in Priestley’s book (1981). It
is important to be aware of the difference between the local spatial power spectrum and the
estimators thereof. Using an estimator, we can compute an estimate of the spatial power
spectrum, for example from plane Fourier or spherical harmonic coefficients. The estimates
would be identical to the true spatial spectrum only if the expansion coefficients were known
accurately and the spectrum were stationary over the entire area, which should rarely be the
case. For example, the global spherical harmonic spectrum of Earth topography overesti-
mates the true spatial power spectrum of topography in the Netherlands and underestimates
it in the Himalayas.

To avoid mis-interpretation, power spectrum estimators should be independent of grid
size, sampling interval and spherical radius, which is fulfilled if they are normalized according
to (1.10). Furthermore, spatially uncorrelated white noise should have a flat spectrum. as is
the case for the 2D azimuthally averaged spectrum advocated here, but not for an azimuthally
integrated spectrum. This can be seen by azimuthally integrating the spectrum P(kq, ko)
obtained from applying Khinchin’s formula (Yaglom, 1986, eq. 4.56)

1 00 00 .
P(kl,kg) = W /OO /Oo 67Z(T1k1+7—2k2) ACF(Tl,TQ) d7'1 dT2 (111)
to a 2D white noise auto-correlation function (ACF) (Yaglom, 1986, eq. 4.62)
ACF (11, 72) = 6(71) 6(72), (1.12)

where ¢ is Dirac’s delta function.

The azimuthally averaged ”radial” power spectra commonly used in applied gravity and
magnetics have a flat white noise spectrum, but may have to be multiplied by a constant
grid dependent factor in order to fulfill (1.10). In contrast, the spherical harmonic coefficient
spectrum used in whole Earth studies (Kaula, 1967; Lowes, 1974) slopes upward for a white
noise and can only be utilized to compare variability among equally sized spheres, because
the spacing of the degrees £ in the wavenumber domain changes with the spherical radius.
Both shortcomings can be avoided by using spherical harmonic spectrum estimators which

comply with definition (1.5) and normalization (1.10).
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1.1.1 Spherical harmonic power spectrum estimator

In geocentric spherical polar coordinates with radius r, colatitude # and longitude ¢ we can
write a scalar function v defined on the surface of a sphere of radius r as a sum of spherical

harmonic contributions ;" of degree ¢ and azimuthal order m as

oo ¢
v(O,6)=> > ¥i'(0,9), (1.13)
{=0m=—£
where increasing values of ¢ correspond to decreasing wavelengths A = 277 /(£ + 1/2). The

contributions are orthogonal in the sense that

(W70, §)h5 (0, ¢)) = 0 for £ # ¢' or m # m’, (1.14)

where (-) denotes averaging over the surface of the sphere. Using the global mean power as

an estimator E{} for the locally expected power as

o0 £l

E{(0,4)°F = (0(0,0)*) = > > (W7(0,9)) (1.15)

=0m=—¢

defines a discrete representation of the estimated local power in terms of contributions of
degree ¢ and azimuthal order m. Let us choose a set of spherical harmonic basis functions
B (0, ¢) (Backus et al., 1996, p. 141-142) with

B = /(20 + 1)Ny cosme Pem(cos g), 0<m</ (1.16)
B;™ = \J(2¢+1)N, sinme P*(cos6), 1<m<¢, (1.17)

where N, = 1 for a fully normalized basis, and N, = 1/(2¢ + 1) for the Schmidt normalized

basis commonly used in magnetics. Here, the functions sz(u) are defined as

o (£—m)! pm :

where P/"(u) are the associated Legendre functions (Backus et al., 1996, eq. 3.7.2). With

respect to this basis, define spherical harmonic coefficients c}* as

U0, 6) = &8y (0, 6) (1.19)

and the discrete representation of the estimated local power (1.15) becomes

Bw0,07) = > 3 (@2800,0)

l

()
=0 m=—¢
-3 > (@)

=0 m=—

)2 Np. (1.20)
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In (1.20) we have a sum over the azimuthal index m, followed by a sum over the harmonic
degree ¢. In contrast to ¢, the azimuthal index m depends on the orientation of the coordinate
system. As in definition (1.5), we become independent of the coordinate system by averaging

over the azimuthal index m. Performing the inner azimuthal sum in (1.20) then gives

E{y(0,4)*} = i Ny(2¢ 4+ 1)} (1.21)

=0
where the azimuthal average 3 is defined as

_ 1 U
2 __ = m\2
%= 50 > (). (1.22)

m=—¢

Now, let us proceed from a discrete to a continuous representation of the estimated power.
Extending the discrete functions N, and ¢ into continuous functions N(£) and c2(£), e.g. as

step functions, we can write eq. (1.21) as

E{y(0,9)2) = /°° N(#)(2¢ +1) E(0) de. (1.23)

—-1/2

Next, let us transform the integrand to a function of the wavenumber k. The wavenumber

of a spherical harmonic of degree £ is (Backus et al., 1996, p. 103)

e+1) L+1/2

= 1.24
T T ( )
We can substitute d¢ = r dk, giving
B{w(,0)"} = [ N (20+1) @) r dk
0
- /°° N(rk —1/2) 72 &(rk — 1/2)? 2k dk
0
o 4712 N(rk —1/2) 2(rk — 1/2)?
= 2 1.2
/ o wk dk (1.25)

~ >
v

P (k)

Hence, the estimated power E{t¢(0,$)2} can be written as an integral over the az-
imuthally averaged power spectrum estimator ﬁ@(k), as prescribed in the normalization
condition (1.10). The spherical harmonic coefficients ¢j* provide the estimator P5(k) at
wavenumbers ky = (¢ + 1/2)/r with

4mr? N(€) 2(¢)? 4mr* N(¢) SN
P = ey TP S

m=

Ps(ke) = (1.26)

This estimator P (k) is related by a factor 47r2(27)~2(2¢ 4+ 1)~ to Kaula’s spherical har-

monic power spectrum (Kaula, 1967). Multiplication by the surface area of the sphere 4772
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makes the new estimator independent of the spherical radius. Thus, using (1.26), we can
directly compare power spectra of the Earth with other celestial bodies, regardless of their
size. Division by (27)? is required in order to fulfill (1.10). Finally, we switch from an az-
imuthally summed to an azimuthally averaged spectrum in dividing by (2¢+ 1), arriving at

a definition in which white noise really has a white spectrum.

1.1.2 Potential field power spectra

In many cases, the parameter 1 (r,0, ) satisfies Laplace’s equation. Then, for internal

sources, the spherical harmonic expansion can be extended radially by

4

w00 =aX (2) T @are.o) (127

m=—/
Spectrum of the potential

Sometimes, 1 itself is the parameter under consideration. In geodesy, for example, it is
common practice to consider the spectrum of the gravity potential. Then the estimator

P, (k) for the azimuthally averaged power spectrum in the location (7,0, ¢) is
¢

Py(r k) = a (9>2M(47”"—N‘ 3 (). (1.28)

r 2 (20+1) =,

Spectrum of the radial derivative

In gravity and magnetics we often have the spherical harmonic coefficients of the potential,
while we are actually interested in the radial derivative thereof. The estimator for the

spectrum of the radial derivative of ¢ is given by

20+4 71.7.2 2 0
Pr(rke) = (9)6 4(%)(5&2 1])% S ()2 (1.29)

m=—~
Spectrum of the field vector

Note the difference between the field vector spectrum describing |By|? and the total inten-
sity spectrum describing |B|2. The Mauersberger/Lowes vector spectrum of the magnetic
field (Mauersberger, 1956; Lowes, 1966; Langel and Estes, 1982) is

a ¢

(|Vep|?) = (;)%H (L+1)(2¢4+1)N, Z (), (1.30)

m=—~

while an estimator for the azimuthally averaged spatial vector spectrum is given by

- a)”‘“1 drr? (0 +1) ¢

P2(r,ke) = (F 22 Z : (1.31)
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1.1.3 Total intensity spectrum

Aeromagnetic surveys usually record only the total intensity of the field. To compare such
data with global field models, one can estimate the total intensity spectrum from the aero-
magnetic data and compare it with the global total intensity spectrum. Another possibility,
discussed later, is to estimate a vector spectrum from the local total intensity data and
compare it with the global magnetic vector spectrum.

There are two ways of obtaining a globally averaged total intensity spectrum from the
spherical harmonic coefficients of the magnetic potential. The exact approach is to compute a
longitude/latitude grid of the magnetic field B from the coefficients ¢j* by a reverse spherical
harmonic transform. Then compute |B| and obtain the spherical harmonic coefficients of |B|
by a forward transform. These coefficients can then be used to compute the exact globally
averaged total intensity spectrum by eq. (1.26). The blue spectra in Fig. 1.1 were computed
in this way.

Alternatively, the total intensity spectrum can be estimated directly from the spherical
harmonic coefficients of the magnetic potential. Given the dominance of the main magnetic
field, a high order magnetic field harmonic B}* contributes to the total intensity only with its
component B'Am parallel to the main field. Hence, what we need to do is derive an estimate
of the expected power E{\B|e||2}. If all power of the magnetic field vector were distributed
equally in the radial and two tangential directions, F {\BL'P} would simply be one third of
E{|B7*|?} (Lowes, 1974). However, this relation is only approximately valid for the Earth’s
magnetic field, which is more radial than tangential at the Earth’s surface. Indeed, a more
precise relation can be derived as follows:

Let us assume that the crustal magnetic field has stationary and isotropic statistical
properties over the Earth’s surface. Then the contribution of B}* to the power of the total
intensity is

E{|B}]*} = E{(b- B}")*} = E{(b,B},, +b; - B},)*} (1.32)

where b is a unit vector in the direction of the main field and the indices r and ¢ denote the
radial (|| r) and tangential (_L r) parts of the vectors at the location r. We want to derive a
relation which depends only on the local inclination I of the main field. The inclination is
the angle of the field against the local horizontal plane. In this case, statistical expectation
means that we have to average not only over all locations on the sphere, but also over all

the possible azimuths « of the main field declination (its angle against local North), as

]_ 2w ,
B{(B,,)"} = (5[ (:Bj,+Dbi-Bj,)* da) (1.33)
1 sor 1 g2
= (0Bl + /O b B ubi - BY o+ /0 (sin?a [by[2[BY,,|? da)
: “ )
) 1
= b?((Bz,m)Q)+§|bt\2<|132m\2> (1.34)
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1
= sin’l {(B},)") + 5 cos’I (|Bi[)- (1.35)
Here, the radial part By, and tangential part B}, of B} are
a &2
By (r0.0) = (€+1) (%) ror©.s) (136)

+2
Bl (n06) = — () @ViB6,0), (1.37)

where V; =7V —r0, is the surface gradient and c}* are the Gauss coefficients of the internal

field. On average, the strengths of the radial and tangential parts are
o 26+4
(B = €+ (2) @ (139)
t o2 A 2
(Bl = (2) @V visp)
a 2+ m\2 my72 Qm
= (4 @iy
a 26+4
= W+ (2) @HEm. (139

For the high degree parts of the magnetic field (B?)/(|B;|?) = (£+1)/¢ =~ 1, so their strength
is half radial and half tangential (Holme and Jackson, 1997). Thus, eq. (1.35) becomes

1 1
B{(B)n)"} ~ (gsin’l + 7 cos’T ){BY[)

.2
= 1 (Bpp). (1.40)
In particular, the ratio is 1/4 for equatorial and 1/2 for polar locations on the globe and
its spherical average for a dipolar main field is 5/12. Superimposing a harmonic of degree ¢
onto a harmonic of degree 1 gives harmonics of degree (¢ — 1) and (¢ + 1). The precise
relation (1.60), derived in the Appendix to this chapter (Section 1.5), shows that the term of
degree (/—1) dominates on average. Hence, B‘e‘ contributes its power mainly to |B|,_1, rather
than to |B|,. This is also mentioned without derivation by Arkani-Hamed et al. (1994). In
summary, we obtain the relation
1+ sin®l
—
which can be used to relate the local spectrum of the total intensity Pg(r,, ¢) to the local

E{Bl;,} =~ (IBY*), (1.41)

spectrum of the field vector Pg(r,6, ¢) as

1+ sin?I(r, 0, §)
4
where ky = (¢ + 1/2)/r. For the mean total intensity spectrum of a predominantly dipolar

P\B\ (7', 07 st k[—l) ~

PB (T’, 97 (ba k@): (142)

field, the ratio can be replaced by its spherical average as
5
<HB|(T797 ¢a kf—1)> ~ E <PB(T1 0a¢akl)>' (143)
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FIG. 1.1: For the exact globally averaged total intensity spectra (blue), the total intensity
on a longitude/latitude grid is computed from the spherical harmonic coefficients of the C89
global magnetic field model. A forward spherical harmonic transform gives the coefficients
of the total intensity from which the total intensity spectrum is calculated using eq. (1.26).
The red line indicates the spectrum estimated from eq. (1.43). The approximation to the
crustal field total intensity spectrum is good.

However, relations (1.42) and (1.43) only hold if the decay of the true total intensity spectrum
is less steep than the decay of the total intensity spectrum of the lower harmonics of the
field. Otherwise, these lower harmonics dominate and (1.42) and (1.43) underestimate the
true total intensity spectrum. This happens with the Earth’s main field, as is illustrated in
Figure 1.1. In contrast, the relation is very accurate for the crustal magnetic field. Finally,
note that relations (1.42) and (1.43) can be reversed. While the crustal magnetic vector field
cannot be inferred uniquely from total intensity data, we can get a reliable estimate of its

vector spectrum.

1.1.4 Plane power spectrum estimator

As in spherical coordinates, we shall write 1) as a sum of orthogonal contributions from
decreasing wavelengths. For practical purposes, let an equidistant grid [z (i1), y(i2)] with

side length D be given by the square Matrix G(iy,4s), 41,72 = 0,..,n — 1. The matrix can
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be written as a discrete Fourier sum

1 n-ln-l 27rz (4171 + 1 ~
Glinin) = = 3 3 exp TSI Gy, ) (L44)
Jl =072=0

where G (41, j2) is the discrete complex Fourier transform of G(i1,42) and j; and j, are integer
indices. With definition (1.44) the Fourier transformed matrix fulfills

n—1 n—1 n—1 n—1

>3 Glini)’ =Y Y |GG, d)I, (1.45)

21=0172=0 71=0352=0
where |G (j1, j2)| can be referred to as a discrete Fourier amplitude. Indeed, it is recommended
in the practical application of the following to check for property (1.45), since fast Fourier

transform (FFT) computer programs tend to add factors of n and n? to either side of this

equation. Since G(i,42) is real valued, its complex Fourier transform é(jl, j2) has the

property G(ji,j2) = G(n — j1,n — ja), ji,j2 = 1,..,n — 1, where the bar denotes complex
conjugation. Thus, we can introduce a re-arranged Fourier grid G'(ji, j»), where ji,jo =
—n/2+1,..,n/2 are the harmonics of the grid:

G'(j1,42) = G(j1, jo)
( Ji,J2) = é(jlaW«—Jé)
G'(ji,—52) = G(n—ji, )
G'(—j1,—j2) = G(n—j1,n— ) (1.46)

B(uleio) vilF) = 15 33 Gl i (1.47)
we can write eq. (1.45) as
~ 1 /2 ~
E{ylz(i),y(i2)]’} = 2 ZZ / 1G' (j1, j2) [*- (1.48)

This is the plane counterpart to the discrete spherical harmonic representation of the esti-
mated power in eq. (1.20). Similar to McKenzie’s definition of an azimuthally summed plane

spectrum (McKenzie, 1994), we can define an azimuthal average @(5) as a function of the

harmonic s = /5% + j2 as

LS G G )P, (1.49)

Sns

where the sum extends over all index pairs (ji, jo) with s — 0.5 < /52 + j2 < s+ 0.5. The
number of such index pairs is denoted by n,. With definition (1.49) as an azimuthal average,

which is continuous in s, we can rewrite eq. (1.48) as
E{[z(i), y(i2)] — / 5) 2ms ds. (1.50)

19



Finally, expressing the integrand in terms of the wavenumber k£ = 27s/D and substitut-
ing ds = D/2n dk gives

Bl v} = [ % &5y ok d (151)
ﬁgv(k)

as the plane counterpart to eq. (1.25). With definition (1.49), the power spectrum estimator

~ D? Dk

Pa(k) = o @(ﬁ) (1.52)

is usually evaluated only for wavenumbers k corresponding to integer harmonics s of the
grid. However, the first test in the following section shows that non-integer values of s
are also admissible. Definition (1.52) is consistent with the azimuthally averaged power
spectrum ("radial power spectrum”) commonly used in applied gravity and magnetics, e.g.
Spector and Grant (1970) or Blakely (1995). Multiplication by (D/n)?* conveniently makes
this estimator independent of the grid size and sampling interval. The division by (27)? is
necessary in order to fulfill condition (1.10), requesting that the integrated power spectral

density be equal to the expected power.

Vector power spectrum estimated from plane total intensity data

Equations (1.42) and (1.43) provide an estimate of the total intensity spectrum from the
vector spectrum for a location on, or above, the Earth’s surface. We can now revert this
relation and obtain a vector spectrum estimator ﬁg(k) from a plane total intensity spectrum
estimator PBl(k). Using key1 = ke + 1/7 we have

~ 1 4 ~
B,y o % 5B
Fo'(k + 7“) 1+ sin?] Fe™ (k)
4 D? —=— Dk
f— 2 ].-
1 +sin®T (2m)2 n2 Gl 27 ) (1.53)

where I is the local inclination of the main magnetic field. From this follows an estimator

for the Mauersberger /Lowes spectrum by multiplying with 7(2¢ + 1)/r2.
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FIG. 1.2: Tests: 40° x 40° windows along the equator are used as sample grids in (nearly)
Cartesian coordinates. Figures 1.3 to 1.8 display the average spectrum estimates Py of 9
adjacent windows versus the exact globally averaged spectrum, given by the estimator Pg.

1.2 Tests of the compatibility of the estimators

To test the accuracy and demonstrate the usefulness of the above theory, I transform fields
given in spherical harmonic coefficients to a 360° x 180° longitude/latitude grid. Then, 9
windows of 40° x 40° are cut out along the equator, where the angular coordinates (6, ¢) are
approximately Cartesian (Fig. 1.2). The plane power spectra are estimated using eq. (1.52),
after applying a taper T'(iy,42) with

2n Sin(ﬂ'il +1)sin(7ri2+ 1
n+1 +1 n+1

T(iy,12) = )y d1,52=0,.,n—1, (1.54)
which is the first order term of a sinusoidal multitaper series (Riedel and Sidorenko, 1995),
extended to a multi-dimensional taper as proposed by Hanssen (1997). The factor 2n/n + 1
compensates for the loss of power in multiplying the grid with the taper. The spectra of
the 9 adjacent windows are averaged to the plane power spectrum estimate, which is then
compared with the power spectrum of the spherical harmonic coefficients. This procedure is
illustrated in Fig. 1.2.

First, the response to a rectangular band limited spectrum on a unit sphere is studied.

Then I compare the spherical harmonic power spectrum with grid sample spectrum estimates
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FIG. 1.3: Spherical and plane power spectrum estimators for a function with a band-limited
white spectrum on a unit sphere.

for a global gravity and a global magnetic field model. In all plots, the lower abscissa
is labeled with the wavelength 27 /k, instead of the wavenumber k itself, and the upper
abscissa gives the corresponding spherical harmonic degree .

Spherical harmonic waveband

A spherical function with band limited white spectrum from degrees 32 to 40 is synthesized
by distributing the prescribed constant PSD for each degree randomly into the coefficients
of all orders. After transforming to a longitude/latitude grid on a unit sphere, continu-
ous plane power spectra are estimated with (1.52) from 9 sample grids of 40° x 40° along
the equator. The 9 power spectra are then averaged and displayed against the true power
spectrum in Figure 1.3. The plane spectrum estimate agrees well with the true spherical
harmonic spectrum and there is only a limited leakage of power to neighboring harmon-
ics. Furthermore, the integrated power of the plane and spherical spectrum estimators is
nearly identical, as demanded by condition (1.10) for the spatial power spectrum and the

corresponding normalization of its estimators in (1.25) and (1.51).
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FIG. 1.4: Vertical component gravity power spectrum of eq. (1.29) together with the average
local power spectrum estimated from the sample grids using eq. (1.52)

Global gravity field

The EGM96 geopotential model (Lemoine et al., 1998) is transformed to a longitude/latitude
grid of vertical component gravity and the average local sample spectrum estimates are com-
pared with the EGM96 spherical harmonic spectrum, displayed in Fig. 1.4. The agreement

is good.

23



spherical harmonic degree

1 5 10 50 100
24 T T T T T T T T 1T T T T T T T T T T
29 | © spherical harmonic coefficients set to zero o )
spherical harmonic power spectrum
20 F © 5 plane power spectrum = ]
q_Q o
E 18 + © 8
4 o)
= 16 ¢ o -
Q 14 + o ]
E o
6 12 i " \LM’}MM‘ i
o
10 - "
8 r =
6 | | | | | T
20000 5000 2000 1000 500

wavelength [km]

FIG. 1.5: Magnetic potential power spectrum of eq. (1.28) of model C89 with the coefficients
of degrees 1-12 set to zero, together with the average local power spectrum, estimated from
the sample grids using eq. (1.52)

Global magnetic field

First, the theory is applied to the magnetic potential. I transform the magnetic model
C89 (Cain et al., 1989) to a longitude/latitude grid of the magnetic potential, estimate
the average spectrum of the equatorial sample grids using eq. (1.52) and compare it with
the spherical coefficient power spectrum of eq. (1.28). For Figure 1.5, the coefficients of
degrees 1-12 were set to zero. Then the average plane spectrum estimate is in agreement
with the spherical harmonic spectrum. However, if the low harmonic degree coefficients
are not set to zero, there is a severe power leakage from low spherical harmonic degrees to
high wavenumbers (Figure 1.6). This leakage occurs in the estimation of the plane power
spectra. Hence, it is not a problem of the spectrum estimator definitions. As illustrated,
the usual procedures of detrending, subtracting a second order polynomial or 2D-multi-
tapering (Hanssen, 1997) fail to prevent the leakage.

The leakage problem is solved by subtracting, separately from each sample grid G;;, the

combination c¢*™ of spherical harmonics fjm which minimizes the residual

n 14
Rn = Z Z (Z(GU - Clim me)Z + D(Cem)2> s (155)

L=0m=—L \ %,j

where the damping term with D = 0.001 is required since the spherical harmonics are not

24



spherical harmonic degree
1 5 10 50 100

N
~

= = N N
(0] (o0} o N
T T T T
°

°
1 1 1

log(PSD [nT? km*))

[EE
D
T

+ linear detrend ———
+ quadratic detrend ——

=
N
T

° .ooo... »
10 1 1 1 1

20000 5000 2000 1000 500
wavelength [km]

FIG. 1.6: Magnetic potential power spectrum as in Fig. 1.5 but including degrees 1-12. The
usual algorithms do not prevent leakage of long wavelength power to high wavenumbers.
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FIG. 1.7: Magnetic potential power spectrum as in Fig. 1.6. Before estimating the plane
spectra, the sample grids were cleaned using eq. (1.55) with values of 3 - 5 for n.
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FIG. 1.8: Vector power spectrum of eq. (1.31) together with the average local power spec-
trum, estimated from the cleaned sample grids using eq. (1.53). Again, cleaning using
eq. (1.55) with n = 4 leads to a good agreement of the plane and spherical harmonic power
spectrum estimators.

orthogonal on a sub-area of the sphere. This procedure is very efficient and n = 4 already
removes the entire main field from a grid (see Fig. 1.7). With higher n we start to remove
the crustal field as well, which is not intended here.

Finally, let us try to estimate the vector spectrum from total intensity data, using
eq. (1.53). For model C89, I compute the longitude/latitude grid of total intensities, clean
the 40° x 40° sample grids using eq. (1.55) with n = 4, estimate the average spectrum us-
ing eq. (1.53) with I = 0°, and demonstrate the consistency with the vector spectrum of
eq. (1.31) in Figure 1.8. Obviously, the cleaning procedure of eq. (1.55) works also with
total intensity data and it is indeed possible to estimate a vector spectrum from local total

intensity data.
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FIG. 1.9: Vector power spectrum (1.31) of the magnetic field at the core-mantle boundary,
estimated from the spherical coefficients of the core field model UFM (Bloxham and Jackson,
1992)

1.3 Magnetic field at the core-mantle boundary

Finally, let us look at the new vector spectrum of the magnetic field at the core-mantle
boundary. The main magnetic field is often said to be ”white” at the core-mantle bound-
ary because its Mauersberger/Lowes spectrum is nearly flat there (Langel and Estes, 1982).
However, ”whiteness” generally means that all available modes in the wavenumber domain
are uncorrelated and have equal mean energy. On a sphere, the available modes are in-
dexed by ¢ and m. Since energy is summed rather than averaged over m, a white noise
Mauersberger /Lowes spectrum is not flat but increases by a factor 2/ + 1. In contrast,
the azimuthally averaged vector spectrum advocated here, which can be estimated using
eq. (1.31), is flat for a white noise field. Figure 1.9 shows that for the Earth’s magnetic field
this spectrum decreases by 2 orders of magnitude from degrees 2 to 12. Hence, even the
non-dipole magnetic field is not white but correlated over large distances at the core-mantle

boundary.
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1.4 Discussion and conclusions

A spatial power spectrum characterizes spatial variance as a function of the wavenumber.
It is a continuous quantity, which is defined a priori, hence, it exists independently of any
measurements that may have been made and independently of the chosen coordinate system.
This spatial power spectrum can be estimated, not computed, from measured data. Here,
I have treated the 2D case, where measurements are located on a curved, but reasonably
smooth surface. We have some freedom in the exact definition and normalization of the
spatial power spectrum. To be independent of the coordinate system, one can integrate or
average over the azimuth. In whole Earth studies it is common practice to use an azimuthally
summed spectrum. This is a peculiar quantity, which carries the units of a 1D spectrum,
but does not describe spatial variability on a 1D profile. Contrary to established conventions
its white noise spectrum slopes upward. In contrast, the azimuthally averaged spectrum
commonly used in local studies is a 2D spectrum which is compatible with the non-averaged
2D spectrum, and its white noise spectrum is flat. After opting for an azimuthally averaged
spectrum, we still have the freedom of normalization. It makes intuitive sense to demand
that the integral of the power spectral density over the 2D wavenumber domain be equal
to the expected local power. This leads to a division by (27)? in the definitions of the
spectrum estimators. Alternatively, one could define the spatial power spectrum as the
variability in terms of the spatial frequency in cycles per km. Then the factor (27) 2 in the
spectrum estimators would disappear. However, in accordance with established conventions
and compatibility with the mathematical literature, it is preferable to use wavenumbers
instead of spatial frequencies and retain the factor (27)72 in the estimator definitions.
Currently, spatial power spectra are estimated with the primary objective of analyzing
their shape in terms of peaks and slopes. However, if one could agree on a common definition
and normalization, even the absolute amplitudes of spatial power spectra from different
studies could be compared directly, without having to worry about spherical radii, grid sizes
and sampling intervals. For example, comparing Figures 1.9 and 1.8 we can say that the
power density of the magnetic field at 3000 km wavelength is 10® times stronger at the core-
mantle boundary than at the Earth’s surface. The redefined power spectrum also shows
that, contrary to earlier assessments, the magnetic field at the core-mantle boundary is not

white.
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1.5 Appendix to Chapter 1

In general, superimposing a harmonic of wavenumber w; onto a harmonic of wavenumber wy
leads to a sum of harmonics with wavenumbers (w; — we) and (w; + ws). Applied to the
situation of an Earth with a dipolar main magnetic field of harmonic degree 1, a high degree
harmonic B}* makes contributions of degrees (£ —1) and (¢ + 1) to the total intensity of the
field. As shall be shown in the following, the contribution in terms of power to degree (£ —1)
is approximately one order of magnitude stronger than to degree (£+1), so the latter should
be negligible in most cases.

Let us assume that the coordinate axis is aligned with the dipole axis. Then

B, _BY-By _ BBt Bl Bin
H B |

(1.56)

where B'e',m is the projection of B} onto the direction of the main field. From eqs. (1.36)
and (1.37), with B oc cos @ follows

4271
[c?’ (%) ] V1 + 3cos26 |Bu’m| =2(£+ 1) cos B} — sinf 043} (1.57)

\m
AZ

To eliminate all occurrences of # and Jy, we require the following relations for fully normalized

spherical harmonics

20+1)l—m4+1)(L+m+1)
20+3

m l—m)(l+m) . l-—m+1)(l+m+1) .

nwor' = J(2£-1)(2£+1)ﬁf—1+d (20+1)(2¢ + 3) B,

s0,67 = (L+1)upy —\/ Bt (1.58)

(1.59)

where s = sinf and u = cosf. Relations (1.58) and (1.59) are valid for all m and can be
deduced from properties of the associated Legendre functions (Backus et al., 1996, egs. 3.7.38
and 3.7.14) with definitions (1.16)-(1.18) and N, = 1. Using first (1.58) and then (1.59) in
eq. (1.57) gives

AT = 3(0+ 1)4 ((f Z__"I;g;ﬁ)) B+ (0 + 2)\} (¢ _(2”;;1 %;fg; Dgm (160

Having used fully normalized spherical harmonics, we can argue that the first term on the

right is 3 times stronger in amplitude, hence, roughly one order of magnitude stronger in
power than the second term. However, this conclusion is valid only if the expectation for
(BY)? and (B;*)? is not higher than for the lower orders |m| < £.
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Chapter 2

Comparison of global and regional
power spectra in gravity and
magnetics

Spatial variability of a geophysical parameter 1 is conveniently described by its spatial
power spectrum. The spatial spectrum usually changes with location; it is not stationary.
Its global mean can be inferred from the coefficients of a spherical harmonic expansion.
Locally, it can be estimated from Fourier coefficients in a plane coordinate system. The
respective estimators can be made compatible by demanding that their integral over the
wavenumber domain should give the expected local power {1?}. In this sense, the usual
spherical harmonic coefficient spectrum (Kaula, 1967; Lowes, 1974) for degree ¢ must be
multiplied by 7! (24 1)~'r? to become compatible with the azimuthally averaged ”radial”

spectrum commonly used in plane coordinates (see Chapter 2).

For the gravity field, we compare the global spectrum of model EGM96 (Lemoine et al.,
1998) with local spectra estimated from regional satellite altimetry and ground gravity grids.
The locations of the grids are chosen in such a way as to reflect the natural spread from low
to high gravity signal. Particularly interesting is the bend in the global gravity spectrum at
wavelengths of 1000 - 2000 km. It is clearly visible in the regional spectra as well, establishing
it as a genuine characteristic of the gravity field. The bend probably separates two distinct

sources of the field, possibly of static and of dynamic origin.

For the geomagnetic field, McLeod and Coleman (1980) derived formulas relating the
power of vector components on great circles to the spherical harmonic coefficients of the
potential. O’Brian et al. (1999) use these formulas to invert for the global spectrum using
vector component aeromagnetic survey lines over the oceans. Their result is in good agree-
ment with the spectra of global field models. Here, we compare the spectra of global field
models C89 (Cain et al., 1989) and ALP94 (Arkani-Hamed et al., 1994) with local spectra
estimated from continental aeromagnetic compilations. The continental spectra are around

one order of magnitude stronger than the global average. This behavior is reflected in equa-
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torial sample grids taken from the global field models themselves. The mean of the sample
spectra is equivalent to the global average, while the oceanic spectra are weaker and the con-
tinental spectra are stronger. We attribute the difference to a varying depth extent of the

magnetized layer. Model spectra of slabs with varying thickness support this interpretation.

2.1 Spatial power spectrum estimators

We list the spectrum estimators used in the following applications. Derivations and further
details are given in Chapter 1. Compatibility of the global spherical and local plane esti-
mators has been tested there. The estimators for the global spectrum of the potential, its

radial derivative, and its gradient are

P(r, k) = a? (%) o ﬂgéi]fl) m;Z(CQH)Q (2.1)
a 2{+4 7'2 2 f e )
Pk = (5) " o X @) 22)

where ky = (¢ + 1/2)/r is the wavenumber, a is the reference radius, N, = 1 for a fully
normalized and N, = 1/(2¢ + 1) for a Schmidt normalized basis, and ¢}* are the spherical
harmonic coefficients of degree ¢ and order m. From the local grids we estimate the spatial

spectrum using
DZ
(2m)? n?

~ = Dk
P(k) = G?*(— 2.4
(¥) (5), (24)
where D/n is the sampling interval of the grid, and @(I;—:) is the azimuthal average of the
squared discrete Fourier amplitudes (see definition in eq. 1.49). Finally, due to the poloidal
and primarily dipolar nature of the magnetic field at the Earth’s surface, the total intensity

spectrum P is related to the vector spectrum Pg by

1 :
Py (ke) ~ Z(l + sin?I) Pg(key1), (2.5)

where [ is the local inclination of the geomagnetic field. The global average of the factor
(1 +sin®I)/4 for a dipolar main field is 5/12.
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FIG. 2.1: Gravity grids used for Figs. 2.2 and 2.3
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FIG. 2.2: Combined gravity power spectra, estimated using egs. (2.2) and (2.4)

2.2 Gravity field

The EGM96 spherical harmonic gravity model was compiled from satellite tracking, satellite
altimetry and land gravity. Its spectrum has a bend at wavelengths of 1000 - 2000 km,
similar to the 'knee’ in the geomagnetic spectrum, but less pronounced. To investigate the
significance of this bend, we compare the EGM96 spectrum with local spectra estimated from

high resolution gravity grids of selected areas, projected onto Cartesian coordinates. From
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FIG. 2.3: Our interpretation of Fig. 2.2. Isostatic compensation sets in above 50 km wave-
length, allowing dynamically supported anomalies to dominate the gravity field at long
wavelengths

Sandwell’s global ocean gravity grid (Sandwell and Smith, 1997) areas of low gravity signal
from the eastern Pacific, medium signal from the Indian Ocean, and strong signal from the
western Pacific are selected. Furthermore, we include areas from central and eastern Siberia,
covered by the University of Leeds free air gravity compilation. The locations of the grids
are indicated in Figure 2.1. We plot the power spectral density (PSD) in logarithmic scale
(Fig. 2.2). Considering that the arithmetic average of the spectra is closer to the maximum
than to the minimum in logarithmic scale, the EGM96 global spectrum is a realistic average
of the local spectra. The bend is present in each, establishing it as a genuine characteristic
of the global gravity field. As in the case of the geomagnetic field, the bend is likely to
separate two different kinds of source, probably of static and dynamic origin (Fig. 2.3). The
static field slopes steeply at short wavelengths and levels off towards long wavelengths due to
isostatic compensation. Dynamically supported density anomalies then dominate the global
gravity field at wavelengths of more than 1000 km. Finally, it is interesting to see that the
satellite altimetry grids in Figure 2.2 have higher power than the Siberian ground data at
wavelengths smaller than 30 km. Either topography is more rugged in the oceans than on

land, or the altimetry data have higher noise levels.
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FIG. 2.4: Magnetic grids used for Figs. 2.5 and 2.6

2.3 Magnetic field

We compare the global spectra of models C89 and ALP94, estimated using eq. (2.3), with
local magnetic grids chosen from continental scale compilations of aeromagnetic surveys,
from which the appropriate Geomagnetic Reference Field had previously been subtracted.
3 areas are chosen from the Soviet Ministry of Geology aeromagnetic compilation of the
former Soviet Union (FSU), digitized by the National Geophysical Data Center (NGDC).
Furthermore, we use the Australian Geological Survey Organisation (AGSQO) aeromagnetic
compilation of Australia. Data were projected onto Cartesian coordinates before extracting
square grids (Fig. 2.4). After estimating their total intensity spectra from eq. (2.4), these
are converted into vector spectra using eq. (2.5). The continental grids have significantly
higher power than the global models in the overlapping waveband (Fig. 2.5). We can rule
out an inconsistency in the spectrum estimators, data errors, and power leakage from the
main field as sources of the discrepancy. The crustal magnetic field at the locations of our
sample grids must indeed be stronger than the globally averaged crustal field. This could
either be due to the difference in continental /oceanic magnetization, or due to an increase
of crustal magnetization with latitude. All grids in Fig. 2.5 are from higher latitudes. For
equal lithology, the power of induced magnetic field anomalies increases by a factor 4 from the
equator to the poles. Locally acquired and viscous remanent magnetizations could behave
in a similar way (Arkani-Hamed and Dyment, 1996).

To investigate the relative importance of geomagnetic latitude versus continent/ocean
differences, we use a spherical harmonic expansion of the ALP94 total intensity at 400 km

altitude. The global total intensity spectrum is estimated from the expansion coefficients
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FIG. 2.5: Magnetic vector power spectra estimated using (2.3) and eqgs. (2.4) combined
with (2.5). Models of eq. (2.6) for 5 = 3.5 and depth to bottom (DTB) of 5 km, 10 km, and
30 km are superimposed

using eq. (2.1) and then converted into a vector spectrum with the global mean factor of
5/12 in eq. (2.5). For the local grids, we extract a line of 30° x 30° samples along the equator,
as indicated in Fig. 2.4. Their vector spectra are estimated using eqgs. (2.4) and (2.5). The
equatorial average spectrum agrees well with the global mean spectrum (Fig. 2.6). A possible
effect of geomagnetic latitude must therefore be of secondary importance. In contrast, the
power of the grids with continental crust is more than one order of magnitude stronger than

of those with oceanic crust.

Thickness of magnetized crust

A primary factor in the continent/ocean difference may be the thickness of the magnetized
layer. The greater the magnetic depth to bottom (DTB), the stronger the power in long
wavelengths. This effect can be quantified by a simple model. It is known that the crustal
distribution of apparent susceptibility (including remanent magnetization parallel and anti-
parallel to the main field) is approximately self-similar (Pilkington and Todoeschuck, 1993).

Hence, let us consider the magnetic field induced by a constant main field B in a slab of
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FIG. 2.6: Magnetic vector power spectra of ALP94 at 400 km altitude

uniform thickness ¢ carved out of a self-similar 3D susceptibility distribution with power
spectrum oc |[k|?, where k is the 3D wavevector and 3 is a scaling exponent. Realistic
values for § are in the range of about 3-4, and in the following a value of § = 3.5 shall be
assumed. The total intensity spectrum of the magnetic field over the surface of the slab is
given in eq. (3.21), derived in Chapter 3. Taking its azimuthal average leads to

K

P(s,t) = Cexp(—ts)s™? /Ooo[cosh(ts) — cos(tk,)](1 + E)_l_ﬂﬂ dk,, (2.6)

which provides a model accounting for the depth to bottom ¢. In logarithmic scale, the
constant C acts as a vertical offset. We determine C by the best visual fit with the Australian
spectrum at high wavenumbers. The model curves for 5, 10, and 30 km DTB (Fig. 2.5)
demonstrate that the increased power in the continental grids is indeed explained by a 30 km
depth extent of the continental magnetization versus 10 km depth for the global average.
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2.4 Discussion and conclusions

A spatial power spectrum can be estimated from spherical harmonic coefficients as well as
from plane Fourier coefficients. While the latter gives local estimates, the former provides a
global average. A combination of both was used here to study regional variability in a global
context. Our comparison of model EGM96 with local high resolution free air gravity grids
shows that a bend in the global gravity spectrum is also present in all of the local spectra.
Most likely, it separates short wavelength static sources from long wavelength dynamically
supported sources of the anomalous gravity field. A similar comparison of global and local
magnetic spectra reveals that the continental crustal field is significantly stronger than the
oceanic crustal field. A primary cause may be the depth extent of the magnetized layer.
Indeed, a 3D self-similar magnetized slab model with 30 km thickness for continental crust
versus 10 km on a global average explains the difference. We did not find an indication for

the presumed increase of crustal magnetic field power with latitude.
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Chapter 3

Curie temperature depth estimation
using a self-similar magnetization
model*

Ferrimagnetic minerals become paramagnetic (i.e. essentially non-magnetic) at temperatures
above their individual Curie temperature. A paramagnetic mineral responds to an external
magnetic field by aligning its uncoupled spins, generating a weak secondary magnetic field
which is aligned with the inducing field. In ferromagnetic minerals, the uncoupled spins
are aligned by an additional quantum-mechanical effect, leading to very strong induced and
remanent (stable) magnetizations. In the presence of two ferromagnetic sub-lattices, the
mineral is called anti-ferromagnetic when the magnetizations of the two sub-lattices cancel
(e.g. in Hematite), and ferrimagnetic if the cancellation is only partial (e.g. in Magnetite).
Low titanium titano-magnetite is likely to be the dominant source of the magnetic field
in the lower continental crust (Schlinger, 1985; Frost and Shive, 1986). This mineral has
Curie temperatures of 575° - 600° C (Schlinger, 1985; Frost and Shive, 1986; Wasilewski
and Mayhew, 1992), which corresponds to depths in the range of 10 - 50 km. Beneath this
Curie temperature depth the lithosphere is virtually nonmagnetic. Furthermore, there is
considerable petrological evidence from xenoliths that the Moho is also a magnetic boundary
(Wasilewski et al., 1979; Mayhew et al., 1985). While total magnetization levels can reach
up to 100 Am™! in mafic lower crustal xenoliths, unaltered upper mantle ultramafics have
low magnetizations (Wasilewski and Mayhew, 1992). In the following we will therefore use
the more general term depth to bottom (DTB), leaving open whether the bottom is in fact
a petrological or a temperature boundary.

Due to the limited depth extent of the crustal magnetization, magnetic anomalies at the
Earth’s surface are damped at long wavelengths. The lack of long wavelength power has
been quantified in numerous studies to derive the DTB from magnetic surveys (Vacquier
and Affleck, 1941; Bhattacharyya and Leu, 1975; Shuey et al., 1977; Connard et al., 1983;

*Published in Geophysical Journal International (Maus, Gordon and Fairhead, 1997)
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Negi et al., 1983; Blakely, 1988; Herzfeld and Brodscholl, 1994; Okubo et al., 1985; Okubo
and Matsunaga, 1994). Most of these investigations have been based on the explicit or im-
plicit assumption that long wavelength anomalies necessarily originate only from deep seated
sources. If this were really the case, the limited depth extent of the crustal magnetization
would already be visible in magnetic maps covering less than 100 km x 100 km. Indeed,
Okubo (1985) has derived a detailed Curie isotherm map of the Island of Kyushu using
60 km x 90 km windows. Blakely (1995) recommends a minimum survey dimension of 50 km
and 160 km for DTB of up to 10 km and up to 50 km, respectively. On the other hand,
Serson (1957) analyzed aeromagnetic profiles extending over several thousand kilometers and
failed to see the DTB because the autocorrelation did not taper off to zero, even for lags of
several hundred kilometers.

Any method of DTB estimation requires a model for the magnetization distribution in
the crust. Earlier models often failed to account for shallow long wavelength variations in the
magnetization. These variations are caused by regional geological features, such as extensive
sedimentary basins, or contrasts between continental and oceanic lithosphere. One can argue
that on average, magnetization contrasts at long scales are similar to the the ones observed
at small scales. This idea leads to the powerful concept of self-similarity (Kolmogorov, 1941;
Mandelbrot, 1983), which is consistent with susceptibility logs (Pilkington and Todoeschuck,
1993; Maus and Dimri, 1995b), susceptibility surveys (Pilkington and Todoeschuck, 1995)
and magnetic maps (Gregotski et al., 1991; Pilkington and Todoeschuck, 1993; Maus and
Dimri, 1995b; Maus and Dimri, 1996).

Here we derive a spectral density model for the anomaly of the total intensity of the
magnetic field. The model accounts for the self-similarity as well as the limited depth extent
of the crustal magnetization. We apply this model to investigate the expected difference in

the spectral density of magnetic maps for different DTB.

3.1 Theory

The potential of the magnetic field in a horizontal observation plane at a height z above a
slab with thickness ¢ of magnetic sources has been given by Naidu (1968, eq. 43, with d; = z
and dy =z + t)

V(z,y,2) = %/700 /jo /jo 1\7[(u,v,w) - (uex + vey + ise,)
exp(—sz)[exp(—st — iwt) — 1]
is (s +iw)

exp(iuz + ivy) dudvdw, (3.1)

where M (u, v, w) is a spectral representation (e.g. Fourier transform) of the vector mag-
netization; ey, e, and e, are the unit vectors of the coordinate system, s = (u,v)” is the

horizontal wavevector and s = |s|.
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Assuming that any remanent magnetization is either parallel or antiparallel to the geo-
magnetic field N = (ng, ny,n,)’, we can describe the magnetization by an apparent scalar
susceptibility function x(x,y, z) as M(x, y, z) = x(«,y, z) N. From the linearity of the spec-
tral representation follows that M(u,v,w) = X(u,v,w) N, and eq. (3.1) can be simplified

to

U(z,y, 2 / / / (ung + vny + isn,)X(u, v, w)
exp(—sz) [exp( st —iwt) — 1]
is (s +iw)

exp(iuzx + ivy) dudvdw. (3.2)

3.1.1 Power spectrum of the magnetic field

The anomaly of the total intensity of the magnetic field Ta(z,y, z), referred to in later
chapters by the established term AT, is related to the potential by Th = INT\ - V. Hence,

Ta(z,y,2) = 2|N| / / / i(ung + vny +isn,)°X(u, v, w)
—st —iwt) — 1
exp(=52) [zXI();+8iw) wt) = 1] exp(iux + ivy) dudvdw. (3.3)

Then a 2D spectral representation of the magnetic field is given by

Lo

oo )[exp(—st —qwt) — 1]
2|N|

i(ung + vny +isn,)? exp(—sz) / X(u,v,w

T
a(u,v,2) = — is (s +iw)

dw.
(3.4)

Let us denote the horizontal component of the geomagnetic field by H and the angle between

the horizontal projection H of the field and the horizontal wavevector s by 6. Then

T 0 1— —st — swt
Ta(,0,2) = e (ns i cos®)Psexp(—s2) [ x(w v w)! e’?;& ) :

dw. (3.5)

The spectral representation TZN’A(u,v, z) of the magnetic field can be regarded as a con-
volution of the spectral representation X(u,v,w) of the susceptibility distribution with a

function ¢(w)

Ta(uv,2) = [ olw) Ku,v,w)dw (3.6)
where
[1 — exp(—st — iwt)]

Ho . 2
= H —
o(w) (n, +iH cos 0)“sexp(—sz) 5+ iw)

2|N|

Up to here one could think of the spectral representations as Fourier transforms on

(3.7)

the basis of the usual Riemann integral. Taking this view, Ta(u,v,z) and X(u,v,w) are
deterministic functions, obtained by an integral transform from the space domain magnetic
field Ta(z,y, z) and the space domain susceptibility distribution x(z,y, z). In the following
we shall take a stochastic point of view. Then Tx(z,y, 2) and x(z,y, z) are regarded as the
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outcome of some kind of random experiment. Their spectral representations are given by

Fourier-Stieltjes integrals (Yaglom, 1986) in the following sense:

R(z) = /oo exp(iuz)Z(du), (3.8)

—0oQ

where R(x) is the random function in the space domain and Z(du) is a complex random

measure determined for any interval du and having the properties
1. (Z(du)) = 0 for all intervals du;
2. (Z(du)Z(du")) = 0 for nonintersecting intervals du and du’
3. Z(duUdu') = Z(du) + Z(du') for nonintersecting intervals du and du’

The spectral density (power spectrum) P(u), if it exists, is related to Z(du) by

(Z(du)Z(du)) = P(u)du (3.9)

Finally
(Z(du)Z(du")) = §(u — ') P(u) dudu'. (3.10)

Here, (-) stands for the expected value and §(u) is the Dirac é-function.

In this notation equation (3.6) becomes

Ta(du, dv, 2) :/ o(w) x(du, dv, dw), (3.11)
where Tx(du,dv, z) and X(du, dv,dw) are two random measures, corresponding to Z(du) in
equation (3.8). An application of the Fourier-Stieltjes Integral to a related problem can be
found in Maus and Dimri (1996). To derive an expression for the spectral density of the

magnetic field, we multiply both sides of (3.11) with their complex conjugates

Ta(du, dv z)TA(du dv, ) / / X(du, dv, dw)e(w") X (du, dv, dw') (3.12)

and make use of relation (3.9) for u and v, and of relation (3.10) for w and w', giving

Pr(u,v, 2)dudv = / / ) 6(w — w') Py (u, v, w)dudvdwdw'  (3.13)

Pr(u,v,z) = /_OO o(w)o(w) Py (u, v, w) dw, (3.14)

where Pr(u,v,z) is the spectral density of the total intensity of the magnetic field and
P, (u,v,w) is the spectral density of the susceptibility distribution within the slab. Recalling
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the definition of ¢(w) from equation (3.7)

o(w)p(w) = 4%2 (n, + iH cos 0)*(n, + iH cos 0)2s® exp(—2sz)
1-— exp(—§t — qwt) (1 - exp(—:?’t - iw’t)) (3.15)
s+ s+’
= 456\(;2 (n? + H? cos® 0)*s? exp(—2s2)
[1 — exp(—ts — itw) — exp(—ts + itw) + exp(—2ts)](s* + w?)~* (3.16)
= 456\(;2 (n? + H? cos® 0)*s? exp(—2s2)
2 exp(—ts)[cosh(ts) — cos(tw)](s* + w?) ™ . (3.17)

Combining equations (3.14) and (3.17) leads to a relationship between the spectral density
of the magnetic field and the spectral density of the susceptibility distribution within the

slab as
Pr(u,v,z) = 2?\(;2 (n? + H? cos® 0)? exp(—2sz — ts)
w?,
/_w[cosh(ts) — cos(tw)](1 + 5_2)
P, (u,v,w) dw. (3.18)

3.1.2 Self-similar magnetized slab model

Assuming self-similarity of x(z, vy, 2) is expressed by

P (u,v,w) = cs(u+0v? +w?) P2 (3.19)
2
_ we, _
= ¢s57° (1+—82) b2, (3.20)

where ¢, and [ are constants, 5 being called the 3D scaling exponent of the susceptibility
distribution. Substituting equation (3.20) into equation (3.18) gives the 2D spectral density

(power spectrum) of the magnetic field due to a slab of self-similar sources

Pr(u,v,z) = cs JA\LIOQ (n? 4+ H? cos® 0)% exp(—2sz — ts)s™°
0 2
/ [cosh(ts) — cos(tw)](1 + w—2)_1_ﬁ/2 dw. (3.21)
0 s

It is common practice to regard the logarithm of the azimuthally averaged "radial” power
spectrum (Spector and Grant, 1970). However, instead of the logarithm of the azimuthal
average power, it is advisable to take the azimuthal average of the logarithm of the power

(Maus and Dimri, 1995b). This is equivalent to using the geometric mean instead of the
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arithmetic mean in the azimuthal averaging. Then eq. (3.21) becomes

Loem N T 1o, o 2 .2 0)\2
-~ /0 In(Prdo = 5 /0 Infe, 75 (12 + H? cos? 0)°)d0 —2s — ts = B In(s)
c
o0 2
+In [/ [cosh(ts) — cos(tw)](1 + w—z)*lf’g/2 dw| . (3.22)
0 s

The anisotropy of the field is then reflected only in a term C' which is independent of the
wavenumber s. Consequently, it is not necessary to reduce the spectrum to the pole. In a
reduction to the pole the spectrum is divided by (n? + H? cos® #)?. This is dangerous at low

magnetic latitudes, because n2 + H? cos® § vanishes at 6 = 90°.

3.1.3 Limitations of the theory

Equation (3.1) is based on the implicit assumption that the magnetic field as well as its
source distribution can be written as a Fourier integral. This contradicts the self-similarity
assumption in equation (3.20). A self-similar random function cannot be represented as a
sum of harmonic waves. The same objection applies to white noise, which is often used as
a model for source distributions. In this case the problem of a diverging Fourier integral is
commonly avoided by assuming band limited white noise. In the same way one can assume
that the self-similarity of a stochastic process is restricted to a limited band of wavenumbers
(Goff and Jordan, 1988; Maus and Dimri, 1996). Nevertheless, equations (3.21) and (3.22)
have to be regarded as approximations rather than exact relations. The quality of the

approximation is likely to vary with the value of .
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FIG. 3.1: Power spectra of aeromagnetic and Magsat grids over S. Africa (after Whaler,
1994, Fig. 10), together with the model power spectra of equation (3.22) for 5 =3, 2 =0
and various DTB. The half-space model corresponds to an infinite DTB.

3.2 Applications

Using equation (3.22), we investigate the possibilities and limitations of DTB estimation
from the power spectrum of total field magnetic anomaly maps. The model power spectra
are obtained by numerical evaluation of (3.22) for a particular set of model parameters.
These model power spectra are then plotted against power spectra of different survey areas.
The constant C' in equation (3.22) is chosen in such a way that the model power spectrum

fits the power spectrum of the magnetic map at high wavenumbers.

3.2.1 Survey areas

Our first sample power spectrum is taken from the literature. It was estimated in the
usual way by Whaler (1994) from aeromagnetic and Magsat data of South Africa downward
continued to surface level. This power spectrum is displayed together with the model power
spectra of equation (3.22) for z = 0 and varying scaling exponents and slab thicknesses in
Figures 3.1-3.3.

Since equation (3.22) is actually a model for the azimuthal average of the log power
and not for the log of the azimuthally averaged power, we have estimated our own power
spectra from two large magnetic grids of the former Soviet Union (FSU), available from
National Geophysical Data Center (NGDC), Boulder, Colorado. The grids were compiled
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FIG. 3.3: Data of Figure 3.1 together with the model power spectra for § = 5.
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FIG. 3.4: Power spectra of the former Soviet Union together with the model power spectra
for § = 4 and z = 300 m in log-log scale. At high wavenumbers the magnetic field is
self-similar and its log-log power spectrum is a straight line. At wavelengths above 50 km
(corresponding to wavenumbers below 0.02 cycles/km) the power is decreased due to the
limited depth extent of the crustal magnetization. The model indicates a DTB of around
15 km under the assumption of 5 = 4.

from surveys flown at 200 m to 500 m topographic altitude. The grid FSU-West extends
from 35° to 78° latitude and 61° to 104° in longitude, while the grid FSU-East has the same
latitude but extends from 104° to 147° in longitude. The international geomagnetic reference
field (IGRF) of 1965 and a first order trend were removed from the data. Their power spectra
are shown in Figures 3.4 to 3.6. The graphs in Figures 3.4 and 3.5 are plotted in log-log
scale to demonstrate the self-similarity of the magnetic field at high wavenumbers and the

departure from self-similarity at low wavenumbers.

3.2.2 Resolution of the depth to bottom (DTB)

It is not our intention to derive precise D'TB estimates of the survey areas, but to investigate
the possibilities and limitations of DTB estimation in general. From the plots in Figures 3.1-

3.5 we draw the following conclusions:

1. A noticeable difference between the model power spectra for different DTB occurs only

at wavelengths above 100 kmn (see in particular Figure 3.5).

2. We find a trade-off between increasing susceptibility scaling exponents S and a decreas-

ing DTB. A scaling exponent of 8 = 4 gives a realistic DTB of around 20 km for South
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FIG. 3.5: Power spectra of the FSU in log-log scale as in Figure 3.4 but with the model power
spectra for § = 3.5. The lower the assumed scaling exponent of the crustal susceptibility
distribution, the greater the resulting estimate for the DTB.

Africa (Figure 3.2). For Central Asia a scaling exponent of § = 4 leads to a DTB of
15 £+ 5 km (Figure 3.4). This may be too shallow. Choosing a lower scaling exponent
of 8 = 3.5 leads to a DTB estimate around 40 km (Figure 3.5). Hence, the fact that
the exact value of the scaling exponent [ of the crustal susceptibility distribution is

unknown leads to large uncertainties in absolute DTB estimates.

3. To resolve the power at long wavelengths with sufficient precision, large survey areas
are required. It is unlikely that a reliable estimate of the DTB can be obtained from an
area smaller than 1000 km x 1000 km. Consequently, it should be difficult to estimate
the DTB from individual aeromagnetic surveys, typically having dimensions of not
more than a few hundred kilometers. The situation may, however, be more favorable

for young oceanic crust with shallower DTB.

4. A consequence of the large survey areas required is that realistic maps of the DTB
would have a very low lateral resolution. It is unlikely that it will be possible to
resolve lateral DTB variations for distances of less than several 100 km from magnetic
data by spectral methods. Such DTB maps would not shed much light on geological

features with strong lateral temperature variations, such as subduction zones.

One also has to take into consideration that long-wavelength anomalies in continental scale

magnetic compilations can be severely compromised by survey stitching procedures, non-
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uniform data acquisition parameters (especially, the elevation) and by the choice of geomag-

netic reference field.

3.2.3 Long range correlation

We infer from Figures 3.1-3.5 that a susceptibility scaling exponent of 3.5 < g < 4 is
consistent with the magnetic maps of S. Africa and Central Asia. This is an important
result, because it implies that the same scaling law observed by Pilkington and Todoeschuck
(1993; 1994) for susceptibility logs and surveys on a local scale can be valid at regional scales
of up to thousands of kilometers, as well. In particular, the crustal magnetization can be
correlated over considerable distances. This contradicts earlier assumptions of correlation

lengths only up to several tens of kilometers (Jackson, 1990; Jackson, 1994).

3.2.4 White depth models

To compare our results with those of earlier studies, let us attempt to interpret the FSU
spectra in the conventional way (Spector and Grant, 1970; Connard et al., 1983). Then
the slope of the power spectrum indicates the depth to the top of some kind of statistical
ensemble of prisms. The limited depth extent of these prisms leads to a maximum in the
power spectrum (Spector and Grant, 1970). The wavenumber of this maximum is directly
related to the DTB (Blakely, 1995). This interpretation is based on the implicit assumption
of a white power spectrum of the magnetic field at source level. Hence, it corresponds to
B = 1 in terms of our model. Figure 3.6 shows the corresponding power spectra. The
obvious disagreement with the observed power spectra, in particular the missing maximum,
is a further indication against using white depth models to estimate the depth to the bottom

of a magnetic layer.

3.3 Discussion and conclusions

We have derived a spectral model for magnetic maps at a regional scale. Long range cor-
relation is accounted for by the scaling exponent of an apparent susceptibility distribution.
The higher the values of 3, the stronger the long range correlation.

For 8 = 1 our model describes the field due to a weakly correlated crustal magnetization
as assumed by the popular white noise field models (Hahn et al., 1976). Many earlier DTB
estimates are based on such models. Figure 3.1 shows, however, that realistic values of
are certainly above 8 = 3. Consequently, the DTB is manifested much less prominently in
magnetic maps than assumed in earlier studies.

Nevertheless, it seems possible to compute maps of the DTB. Main obstacles are the

low resolution and the trade-off between higher scaling exponents § and shallower DTB.
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FIG. 3.6: Power spectra of the FSU with the model power spectra for 5 =1 and z = 3.5 km.
This corresponds to an interpretation using the white depth models which were utilized in
earlier studies to derive DTB from the location of a maximum in the power spectrum. There
is no maximum in the FSU power spectra. Maxima are only found in power spectra which
are inaccurately derived from small survey areas.

Resolution of the DTB requires an assumption on 3. Values of 8 could be larger in the lower
crust, indicating a smoother distribution of magnetization. However, assuming a constant
value of § = 4 and moving a window over a very large area would probably lead to a smooth
DTB relief, with a certain degree of uncertainty in the absolute depth.

Perhaps our most interesting finding is that the self-similarity of the crustal magnetiza-
tion extends with a high scaling exponent of 33p close to 4 up to regional wavelengths. The
3D scaling exponent [5p of the susceptibility distribution is related to the scaling exponents
of lower-dimensional cross-sections of the same distribution by B3p = Bop +1 = Bip + 2
(Maus and Dimri, 1994). A Bsp close to 4 therefore fits well to the results of earlier stud-
ies which suggest that the susceptibility distribution in the crust has scaling exponents of
Bip ~ 2 (Pilkington and Todoeschuck, 1993) and SByp = 3 (Pilkington and Todoeschuck,
1995). Furthermore, the corresponding magnetic field at surface level should have a 2D scal-
ing exponent of yop = B3p — 1. Indeed, Gregotski, Jensen and Arkani-Hamed (1991) found
scaling exponents of ysp = 3 for local magnetic anomalies in North America. However, sig-
nificantly lower scaling exponents of 51p = 0.4 and y2p = 2 were found for the susceptibility
distribution and the magnetic field in the area of the German Continental Deep Drilling
Project (KTB) (Maus and Dimri, 1995b).
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Chapter 4

Variogram analysis theory”*

Density and susceptibility distributions in the Earth’s continental crust are self-similar (scal-
ing, fractal), with a power spectrum P (k) proportional to |k|=?, where k is the wavevector
and § is called the scaling exponent (Pilkington and Todoeschuck, 1990; Pilkington and
Todoeschuck, 1993; Pilkington and Todoeschuck, 1995). Self-similar random functions were
first proposed by Kolmogorov (1941; 1961) to model velocity fluctuations in a 3D turbulent
medium. Their importance for the Earth sciences was discovered by Mandelbrot (1983).

The spectra of gravity and magnetic fields can be related to the spectra of their respec-
tive source distributions (Naidu, 1968). Self-similar source models lead to realistic spectral
models for gravity and magnetic data (Gregotski et al., 1991; Pilkington and Todoeschuck,
1993; Pilkington et al., 1994; Maus and Dimri, 1995b; Maus and Dimri, 1996). Such models
can play an important role in the processing and interpretation of potential field data (Maus,
1996), for example in gridding (Pilkington et al., 1994), susceptibility mapping (Gregotski
et al., 1991), depth estimation (Pilkington et al., 1994; Maus and Dimri, 1995a) and the
computation of isostatic gravity residuals (Chapin, 1996).

In depth estimation by spectral analysis, magnetic data are interpolated to a regular grid,
transformed by FFT to wavenumber domain and their azimuthally averaged power spectrum
is analyzed (Spector and Grant, 1970). However, even if the former spectral slope models
are substituted by the more realistic self-similar models, depth from magnetic power spectra
remains inaccurate (Maus and Dimri, 1996). This is due to the distorting effects of gridding,
preparation for FFT, and azimuthal averaging on the data power spectra.

Here, I transform a self-similar spectral model analytically to the space domain in order
to avoid the distorting effects of transforming measured data to the wavenumber domain.
I argue that variograms are the appropriate space domain statistical models for analyzing
magnetic and possibly gravity data. After describing my spectral model for the magnetic
field, I derive the corresponding variogram model for the complex case of aeromagnetic

profiles in a non-vertical inducing field. The variogram model for gravity data is subsequently

*Published in Geophysics (Maus, 1999)
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derived as a special case. Graphs of the model variograms illustrate the influence of profile
orientation, depth, source intensity and scaling exponent. Finally, a section on practical
aspects proposes solutions to key difficulties in implementing a variogram analysis algorithm.
Case studies, including further explanations, a comparison with Spector and Grant’s method,

and tests on synthetic data are given in Chapters 5 and 6.

4.1 Spectral models

4.1.1 Magnetic field power spectrum

Let us assume that magnetization as a function of the location r can be expressed as the
product of a scalar susceptibility x(r) and a constant geomagnetic field N. This implies, in
particular, that no significant component of remanent magnetization exists in any direction
other than N. Then the power spectrum Par(k) of the total intensity anomaly AT in a
horizontal observation plane due to a slab of scaling sources is given by substituting eqs. 3.16
and 3.20 into eq. 3.14 as

12

Par(s) = 4—]\?2(712 + H?cos® §)%s* exp(—2s2)
/ [1 — exp(—ts — itw) — exp(—ts + itw) + exp(—2ts)]
—0o0

(5% + w?) 7 cy(s? + w?) P dw (4.1)

where s = (u,v) is the horizontal wavevector, s = |s|, w is the vertical component of the
wavevector, z is the distance between the observation plane and the top of the slab, ¢ is
the thickness of the slab, N = (ng, ny,n,) is the geomagnetic field, N = |N| its inten-
sity, H = |(ng, ny)| its horizontal intensity, 6 is the angle between s and H, and py is the
magnetic permeability of free space. The parameters ¢, and [ refer to the susceptibility

distribution x(r) on a full-space with power spectrum
P, (u,v,w) = ¢s(u? + v* + w?) /2, (4.2)

of which the slab is a spatial subset. Hence, the slab is thought to be carved out of an
imagined self-similar 3D susceptibility distribution. Note that the slab in an otherwise
empty space is neither self-similar nor does it have a power spectrum as in equation (4.2).
The limited depth extent of crustal magnetization has no noticeable effect on the power
spectrum of the magnetic field up to wavelengths of about three times the depth to bottom
(see Figures 3.4 and 3.5). For most practical cases in basement depth estimation, where the

size of the data analysis window is much smaller, we can simplify equation 4.1 by utilizing
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a half-space model, corresponding to t=o0c. Then

Par(s) = 4/;\(;2 (n? + H?%cos® 0)%s® exp(—2s2)
/ (s* +w?) A% dw (4.3)
2
= 054]\(;2(n + H? cos? 0)%57F exp(—2s2)
[0+ s du (1.4
= 2";\(])2(n + H? cos? )%~ P exp(—2s2)
/ [1+a?]7%%7 da, (4.5)
0

with @ = w/s. Solving the integral using Gradshteyn (1994, eq. 3.251.2) gives

Par(s) = ol 2“]%) BI1/2,(8+1)/2] (0} + H’cos’0)® s~ exp(=252),  (46)
Dir(G) Q(s)

where B is the beta function B(z,y) = I'(z)['(y)/I'(z + y).

4.1.2 Gravity field power spectrum

The spectrum P, of the vertical derivative of the anomalous gravity potential due to a
self-similar density distribution within a half-space can be written (Naidu, 1968; Maus and
Dimri, 1995b) as

2

Py(s) = CS% exp(—2s2) /EO (5% + w?) P27 dw (4.7)
= CS%B[1/2, (B+1)/2]s77" exp(—2s2), (4.8)

where ¢ is the universal gravity constant and ¢, and 3 are parameters describing the anoma-
lous density distribution of a half-space model as in (4.2).

Comparing equations (4.6) and (4.8) shows that the gravity model is very similar to the
AT model for the special case of a vertical inducing field N = (0,0, N).

4.1.3 Scaling exponents

The 3D scaling exponents of crustal susceptibility and density can be inferred from 1D and
2D cross-sections, such as bore wells and surveys at the surface. Furthermore, they can be
derived from the respective magnetic and gravity fields. Relationships between the scaling
exponents of a field and its sources in different dimensions have been derived by Maus and
Dimri (1994).
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Marine gravity off Norway and south of Japan, as well as free air and Bouguer gravity
of the Former Soviet Union have a consistent 5 = 3.5 (Chapter 7.5). Pilkington and To-
doeschuck (1990) derived scaling exponents of around 1, corresponding to 8 ~ 3 from density
logs.

Gregotski et al. (1991) estimated scaling exponents from 8 aeromagnetic data sets finding
values in the range of 2.8 to 3.4, corresponding to 3.8 < § < 4.4. An average scaling exponent,
of f = 4 was further confirmed by Pilkington et al. (1993; 1994; 1995) from susceptibility
logs, aeromagnetic data and susceptibility surveys. In contrast, Maus and Dimri (1995b)
derived scaling exponents of § < 3 from helicopter magnetic data and a 4 km vertical rock
susceptibility profile at the German Continental Deep Drilling site.

In general, density logs are smoother than susceptibility logs. The scaling exponent of

density should therefore be higher than that of susceptibility, at least on a local scale.

4.2 Space domain counterparts

4.2.1 ACF versus variogram

The most obvious space domain counterpart of a power spectrum is the auto-correlation
function (ACF)

ACF(1) = (X(r+ 1)X(r)), (4.9)
which is related to the power spectrum by a Fourier transform

ACF(r) = /_ °:o /_ ‘: exp(ir - s) P(s) du do. (4.10)

However, if we use (4.10) to derive the ACF counterpart of the spectral model defined by
(4.6), we face the problem that the integrals do not converge for § > 3. This reflects the fact
that for 8 > 3 equation (4.6) describes an inhomogeneous random function (equivalent to a
nonstationary process in 1D) with infinite variance and a variable mean value. This is not
just a mathematical problem. Anyone having attempted to estimate an ACF from magnetic
data must have faced the difficulty of estimating the baseline, i.e. estimating ACF(0). Thus,
the ACF is an inappropriate device for the statistical characterization of AT magnetic data.

For 3 < 8 < 5, equation (4.6) describes a random function which belongs to the class
of locally homogeneous random functions (corresponding to processes with stationary incre-
ments in 1D). For these, the difference between two values, measured at a constant vector
separation, is stationary. A locally homogeneous random function is characterized by its
variogram (Cressie, 1993, pp. 58)

V(T) = ((X(r) = X(r+7)]?). (4.11)
This variogram has a spectral representation (Yaglom, 1986, p. 435)

V(r) = /_Z /_o:o [1— cos(r - s)] P(s) du dv. (4.12)
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For the magnetic model (4.6) the integrals in equation (4.12) converge for 5 < 5 (see discus-
sion below). Thus, the variogram is applicable to a wider and more realistic range of scaling
exponents than the ACF.

Whether it is better to utilize the ACF or the variogram to characterize the statistics of
measured data is an important question. To further illustrate the problem, let us consider
the AT measurements along an aeromagnetic profile as a 1D random process. One can
estimate the variogram of this process using equation (4.11). The ACF can then be derived

from the variogram using the relationship (Yaglom, 1986, eq. 4.233)
ACF (1) = 1/2[V(c0) — V(1)]. (4.13)

However, to be able to use this relationship, the variogram has to level off to a constant
value for a lag 7 smaller than the window size. Otherwise, V' (co) remains unknown. This
is exactly where the problem lies. Variograms of AT data tend to keep increasing, even for
large lags.

Generally speaking, the use of variograms instead of ACFs in the interpretation of AT
magnetic data - and probably of gravity data as well - makes sense both from a theoretical

and a practical point of view.

4.2.2 Magnetic variogram

Let us introduce horizontal polar coordinates (s, ¢) in the 2D wavenumber domain of the
observation plane, where s is the wavenumber and ¢ is the azimuth. We are interested in
changes of lag 7 along profiles with a constant direction. Let us choose the coordinate system
in such a way that ¢ = 0 for this direction. Then the scalar product 7-k in (4.10) and (4.12)

reduces to 7scos ¢ and we can write (4.12) as

vy = [T 11 = cos(rs cos 6)| Par(s, )do sds, (4.14)

where Par(s, @) is the power spectrum defined by equation (4.6) in horizontal polar coordi-
nates. If the integrals converge, the right hand side of equation (4.14) is well defined, and
we obtain a space domain model for the variogram of measured profiles with a constant
direction.

Denoting the declination of the normal field N in terms of our new coordinate system
(z-axis parallel to the profiles) by a, we obtain § = ¢ — a.. Here, ¢ is the angle between the
wavevector and the profiles and 6 is the angle between the wavevector and the horizontal
component of N (see also the text following equation (4.1)). Then equation (4.14) can be
written as

V(r) = cs(éu—]sf)ZB[l/Z, (B+1)/2] /Ooo /OZW[l — cos(Tscos ¢)] Dir(¢p — a)dp Q(s)sds. (4.15)
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To solve the inner, angular integral in equation (4.15)

Iguar(7s) = [ 11— cos(rs cos @)] Dir(¢ — a)do,

(4.16)

the term Dir(¢ — «) defined in equation (4.6) can be expressed in terms of powers of sin ¢

D’l,’l“((]5 — a) = {nz + HQ[(:OS(¢ — a)]2}2
= {n?+ H?[cos ¢ cos a + sin ¢ sin a]*}?
= [n? + (n, cos ¢ + ny sin ¢)°]?

= (ng — 6nin2 + nt) sin*¢ + (4ngny — 4nyn3) cos ¢sin’ ¢

+
+

(6ngns + 2nn? — 2n, — 2nin?.) sin’ ¢
(

2 3 . 4, 4 2 2
dnyngn; + 4nyny) cos ¢sin ¢ + n, + ny, + 2nin;

=: Tysin* ¢ + Ty cos ¢psin® ¢ + Ty sin? ¢ + T cos ¢ sin ¢ + Ty,

(4.17)
(4.18)
(4.19)

(4.20)
(4.21)

where =: denotes the definition of T, ..., Ty. The inner integral Iy, guiar (75) of equation (4.16)

can then be written as

2

Longuiar(T8) = | [1 — cos(7s cos ¢)](Tysin* ¢ + Ty cos ¢ sin® ¢ + Ty sin? ¢

+T cos ¢psin ¢ + Ty) do
= 4 /07r/2[1 — cos(7s cos ¢)|(Tysin* ¢ + Ty sin? ¢ + Tp) do.

(4.22)

(4.23)

This integral can be solved using Bessel functions J,, of integer order n (Gradsteyn and

Ryzhik, 1994, eq. 4.411.4)
_ o 2(=z/2)"
— /rl(n+1/2)

where [ is the gamma function, and the formulae

2 I[(m+1)/2]y/7
/0 Sin™ ¢ d¢ oT[(m + 2)/2]

/) = Vr
and'(z+1) = zI'(z).

Jn ()

/2
/ cos (z cos ¢) sin®" ¢ dg,
0

Equation (4.23) then becomes

2T: 3 67T,
ngular(TS)/’]T = 2T0 — 2T0J0(7'S) + Tg — T—SZJI(TS) + ZT4 - TQ—:QJQ(TS),

and with (4.15) we obtain the final equation

V(r) = me () BlL/2, (8+1)/2) /OOO[T—QTOJO(TS)—%L(TS)

_ﬁJQ(TS)]e_QZS s*7P ds
725
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3
T = =(n)+n2)*+2nZ(n) +ni+n2) (4.30)

4
= %H‘* + 2n2N? (4.31)
To = ni+nt+2nn2 (4.32)
T, = 6nin.+2n.n2 —2n, — 2n.n’ (4.33)
T, = ny,—6nn,+n, (4.34)

Here, N = (n4, ny,n,) is expressed in coordinates relative to the flight lines. Since only even
powers of n,, n,, and n, appear, we need not take care of the orientation of the coordinate
system, as long as n, = 0 for H parallel to the profiles and n, = 0 for H perpendicular to

the direction of the profiles.

4.2.3 Gravity variogram

The gravity spectrum of (4.8) is very similar to, and somewhat simpler than the magnetic
spectrum of (4.6). The corresponding variogram model for g, gravity data can be obtained
from equation (4.29) as the special case of n, = n, = 0 and n, = 1. Further substituting

—p for 2 — B and adjusting the constants provides

2
_ 8o

V(r) B[1/2, (8 +1)/2] /O Y= Jo(rs)]e 2 5P ds. (4.35)

N m
In this case, the variogram is horizontally isotropic. Consequently, the model is applica-
ble to any set of gravity measurements located in a horizontal observation plane, whereas
equation (4.29) requires the magnetic measurements to be located on a profile with constant

direction.

4.2.4 Convergence of the integrals in 4.2.2 and 4.2.3

The variogram models of equations (4.29) and (4.35) are defined only for a limited range of

scaling exponents. Using the relationship (Yaglom, 1986, p. 355)

J(n—2)/2(a:) 2(2—n)/2 .T2 $4
= -2 Jforn=23,.. 4.
2o " T Lo T rngyy =23, (4:36)

it can be shown that the integral in equation (4.29) converges in the interval s € (0, 1] for
B < 5 and any z. In the remaining interval s € (1, 00) the integral converges always if z > 0.
In case z = 0, however, the integral converges only for # > 3. This latter restriction is
probably of little practical consequence, since a small distance between the sources and the
observation plane can always be assumed. The restrictions for the gravity variogram can be
found by a similar line of reasoning.

In summary, the magnetic variogram (4.29) exists for 8 < 5 while the gravity vari-
ogram (4.35) exists for 8 < 3.

26



4.2.5 Limitations

The statistical model developed here has the following known limitations:

1.

It does not account for components of remanent magnetization perpendicular to the

normal magnetic field.

It does not account for anomalies caused by topography. In particular, topographic
gravity anomalies are often stronger than gravity anomalies caused by subsurface den-

sity variations.

It is based on the simplifying assumption that measurements are located in a horizontal

plane, whereas ground and even airborne surveys usually follow surface topography.

. Within a particular data analysis window, the source parameters z, $ and ¢, are

assumed to be constant. Hence, variations in z, 5 and ¢, can only be detected if their

wavelength is larger than the size of the analysis window.
The case of multiple source layers is not considered.

For a susceptibility distribution with 8 < 3, the model does not provide for the var-
iogram of the magnetic field at ground level, due to a diverging integral in equa-
tion (4.29).

A density distribution with 8 > 3 leads to a diverging integral in equation (4.35).

. The integral in equation (4.29) has to be evaluated numerically. Equation (4.35) has

an analytical solution (personal communication by Peter Weidelt).

4.3 Graphs of the variogram

Some special cases of the variograms V defined by equation (4.29) and of V}, defined later in

equation (4.49) shall now be illustrated. In particular, the effect of the model parameters N,

cs, 2, and 7y on the graphs of the variograms are demonstrated. For compatibility between

the AT and g, spectral models, given by equations (4.29) and (4.35), let us introduce 7y

as the 2D scaling exponents of the fields in the horizontal observation plane, related to the

scaling exponents of their 3D source distributions by yar = Bsuse — 1 and vy = Baens + 1,

respectively (see also Maus and Dimri, 1994).
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FIG. 4.1: Effect of the profile orientation relative to the horizontal component of the magnetic
field H. Displayed are the model variograms V of eq. (4.29) for different profile azimuth
angles with z = 500 m, v = 2 and n, = 0, hence at the magnetic equator where the effect
of profile orientation is strongest.

4.3.1 Orientation of the profiles relative to the normal field

The parameter N is determined by the orientation of the measured profiles with regard to
the direction and intensity of the Earth’s normal magnetic field. It is not a variable model
parameter. Figures 4.1 and 4.2 show the model variograms V" and V,, for different orientations
of the profiles near the magnetic equator (n, = 0), where the effect of profile orientation
is greatest. The variations are least for profiles perpendicular to the geomagnetic field and
strongest for profiles parallel to the field. At higher geographic latitudes the anisotropy of
the variations of the magnetic field is less pronounced. Figure 4.3 demonstrates that the

variograms differ not only in amplitude, but also in shape.

4.3.2 Intensity of susceptibility variations

The parameter ¢, may be of considerable practical interest, since it reflects the intensity
of source variations. For magnetic data, the square root of ¢, is possibly related to the
magnetization of the source rocks. On the graph of the variogram, however, the parameter

¢, acts only as a constant factor.
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FIG. 4.2: Effect of the profile orientation on the modified model variograms V; of eq. (4.49)
for different profile azimuth angles with z = 500 m, v = 2 and n, = 0, same case as in
Figure 4.1
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FIG. 4.3: Variograms V, of Figure 4.2 rescaled to have equal amplitude at lag = 5 km. The
variograms for different profile azimuth angles differ not only in amplitude but also in shape.
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FIG. 4.4: Effect of the depth to source. Displayed are variograms V of eq. (4.29) for v = 2.

4.3.3 Depth to source

The effect of depth to source z on the variogram V of eq. (4.29) is displayed in Figure 4.4.
With increasing depth to source, the variogram of the potential field experiences a drastic
decrease in overall amplitude. However, this overall amplitude is already covered by the
intensity parameter c;. To estimate depth from variogram amplitude, we would have to
assume c; = constant. In general, this assumption is too strong and it is advisable to keep
cs variable. If ¢4 is kept variable then depth has to be detected solely from differences in

variogram shape.

Differences in shape of the modified variogram V; due to depth are illustrated in Fig-
ure 4.5. Since upward continuation suppresses variations of short wavelength stronger than of
long wavelength, variogram shape differs primarily at short lags. While there is a significant
difference between the variograms for 1000 m and 2000 m depth, the difference at 5000 m
depth is negligible. Hence, the maximum resolvable depth is approximately one fifth of the
variogram length. From my experience, the window size has to be at least twice the length
of the variogram to be estimated. Therefor, a variogram estimated from a given window can
resolve depths to not more than one tenth of the window size. The exact ratio depends on
further factors, such as the scaling exponent of the source distribution. The smaller 3, the

better the resolution of depth.
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FIG. 4.5: Effect of the depth to source on the variograms V, of eq. (4.49) for v = 2. Vari-
ograms are rescaled to intersect at 5 km lag.

4.3.4 Scaling Exponent

The scaling exponent y determines whether the variogram V (Figure 4.6) is generally convex
or concave, i.e., whether it turns upwards (y > 3) or towards higher lags (7 < 3). The scaling
exponent influences the shape of the variograms in a similar way as the depth to source. To
see this, compare Figure 4.6 with Figure 4.4 for V and Figure 4.7 with Figure 4.5 for V.
This means that if we observe a smooth magnetic field it can either be caused by a rugged
source distribution (small ) at a greater depth, or by a smoother source distribution (larger
B) at a shallower depth. A consequence of this ambiguity is that 8 and z cannot be resolved

simultaneously, unless perhaps, by using very large windows.
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FIG. 4.6: Effect of the scaling exponent y on the variograms V' of eq. (4.29) for z = 10 m.
The curves are rescaled to intersect at 7 = 10 km. The depth z was chosen greater than
zero, otherwise the integral in equation (4.29) would not converge for the variograms with
v <2
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FIG. 4.7: Effect of the scaling exponent 7 on the variograms Vj, of eq. (4.49) for z = 10 m.
Variograms are rescaled for better comparison. The scaling exponent influences the shape
of the variogram in a similar but not identical way as the depth to source (see Figure 4.5).
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4.4 Practical aspects

Following are some additional formulae which are essential in applying the variogram analysis

method to real magnetic data sets.

4.4.1 Computing the model variograms

To compute the model variogram defined by equation (4.29) for a given set of model pa-
rameters, we have to numerically approximate the integral. At first glance this looks like
a technical problem which could be solved by quadrature algorithms available in standard
math software packages. However, the term in square brackets tends towards zero for low
values of s, whereas s>~ tends to infinity. The product of the two terms tends to zero for
B < 4 and to infinity for 8 > 4. To integrate numerically over this product can lead to
arbitrary results.

A solution to the problem is the following: We use eq. (4.36) with z = 7s to approximate
the Bessel functions in equation (4.29). For small values of 7s, say 7s smaller than some a,
it is sufficient to consider just the first two terms in (4.36). Since this approximation only

holds for small 7s, we have to split the integral in equation (4.29) into two parts

V=" :/0/+/;’° = Vi(r, @) + V(7 ). (4.37)

The second integral V5 (7, a) is straightforward and can be evaluated with a standard quadra-
ture algorithm. For the first integral, we can use the first two terms in the square brackets
of eq. (4.36) and substituting 7" = 27T, + T» + %TLL in equation (4.29) we arrive at

B Ho o T, Ty 7 ralt 4B 225
Vi(r,a) = mes(—=)°B[1/2,(8+1)/2][2T0 + — + —|— s*Pe " ds. (4.38)
2N 2 44 Jo
The integral can now be solved using the relationship
/ v re M dy = pm i (v, pu), (4.39)
0
where [';,. is the incomplete I'-function, leading to
T, T 2
Vi(r,a) = ms(%)%u /2,(8+1)/2]2T0 + 5 + 7112777 (5 - B, %)72. (4.40)

Adding the two parts V; and Vs according to (4.37) then yields the desired model variogram
V(7).

4.4.2 Estimating the variogram from a segment of a profile

In practice, we want to obtain the best possible estimate from the shortest possible segment
of the profile. This can be achieved by utilizing the estimator

V)= [ X+ 7) - X (4.41)

63



where X (t) is the measured field, with X (0) and X (7') at the beginning and end of the

segment, respectively. Visa variogram estimated from measured data.

4.4.3 Extended model accounting for linear trends

The model variogram defined by equation (4.29) is the theoretical variogram of the magnetic
field due to a horizontally infinite half-space of scaling sources. In practice, however, we are
interested only in source parameters within a limited area (window). Furthermore, we want
to keep this window as small as possible in order to enhance spatial resolution. Regarding
small segments of a measured profile, one often finds a strong linear trend. This trend usually
reflects large scale geological features which are unrelated to the local magnetization. Such
large scale trends are expected for non-stationary data and are consistent with the variogram
models of equations (4.29) and (4.35). However, equations (4.11) and (4.41) show that a
linear trend in the data has a dramatic effect on the shape of the estimated variogram. In
order to focus the analysis on to the current data analysis window, linear trends in the data
have to be dealt with in some way or other. Arguably, this is the key problem in designing
a reliable variogram analysis algorithm.

It may appear as the obvious solution to detrend a segment in the usual way, namely,
fit a straight line in a least squares sense, subtract it from the data, estimate the variogram
from the detrended segment, and compare it with the model variograms of equations (4.29)
or (4.35). However, the linear trends are an integral part of these model variograms. Strictly
speaking, the model variograms of equations (4.29) and (4.35) do not apply to detrended
data. One could ignore this problem and hope that detrending will just lead to lower model
scaling exponents. However, this is far from obvious.

A clean solution is to not only detrend the data, but also modify the model variograms to
account for the detrending. By the least squares method of detrending the data variograms
are altered in a way that [ am unable to quantify. In the following, I therefore use the more
primitive method of fitting a straight line through the end points of the segment. For this
detrending, the modified model variograms can be found as follows:

Let us denote the measured data within the considered segment of the profile by X (¢).
Let us further denote the beginning of this segment by ¢ = 0 and the end by ¢t = 7" and let
us subtract an offset from the data so that X (0) = 0. Then we can define a process Y (1),
which is derived from X (t) by

Y(t) = X (t) - %X(T). (4.42)

The new process Y (¢) has the advantage that the presumed linear trend in X (¢) is not
reflected in Y'(¢). The variogram of Y'(¢) can be estimated from the measured data using
equation (4.41). We have a model variogram V(1) defined by equation (4.29) for the process

X(t) from which we now have to derive the model variogram for Y'(¢). The idea behind
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the following derivation is to answer the question: ”If we have a variogram model V' (7) for
the process X (t), what is the expected variogram (V,, (7)) for the detrended process Y(t)?”.
Using triangular brackets (-) for the expected value, equation (4.41) gives

W) = (e [~ P (1.43)
= (o [ HEX) - X () - X)) (4.44)
_ <(T_TW /OTTX(T)th) ¥ - /OTT[X(t 1) — X(8)]2d8)
e [ EEXT)X () - S X (D)X (0] (4.45)
= VIV - [ X)X+ 1)
+2%(X(T)X(t))]dt (4.46)
Since X (t) = 0 for ¢t = 0, the identity (Yaglom, 1986, eqs. 4.222 and 4.224)
(X(t+7) = XOUX @ +7) = XOD = 5V + Vi) = Vin =) (447)
reduces to .
(X(n)X(r)) = 5[V(1) + V() = V(n - 7) (4.48)
so that
(V, (7)) = V(T)—F%V(T)—ﬁ /0 W )=V (O 4+V (T—t) =V (T—t—1)]dt. (4.49)

Equation (4.49) describes how the model variogram V(1) of the original segment X (¢) can
be transformed into a model variogram V;(7) for the detrended segment Y'(¢).

Generally speaking, it is essential to detrend a segment prior to estimating its variogram.
The least squares method provides a better estimate of trend, but the model variograms
for the detrended process may be difficult to compute. For end-point detrending the effect
on the model variograms is described by equation (4.49). Unfortunately, the end points are
not always a good estimate of trend. Consider, for example, a prominent dike across-line at
one side of the data analysis window. Due to the resulting spike at one end of the segment,
a straight line through the end points would not reflect the general trend. In practice,
the distorting effect of such a dike can be minimized by using segments shorter than the
window size and averaging variograms for several segment positions along-line within the

same window.

4.5 Conclusion

Assuming self-similar source distributions, I have derived variogram statistical models for

AT magnetic and g, gravity data. Variogram models for horizontal and vertical derivatives
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of AT and g, (gradiometer data) could be found in a similar way.

Statistical features of AT line data are attributed to 4 parameters: (1) orientation of
profiles relative to the direction of the main field, (2) intensity cs, (3) scaling exponent 3,
and (4) depth z of source. I developed this model to decompose aeromagnetic surveys into
maps of ¢;, § and z, with the highest possible accuracy and resolution. The intensity c,
can be mapped from single flight lines using a very small window if z is substituted by the
survey terrain clearance and f is kept constant (Figure 5.7). Such high resolution maps of
c,s are easier to interpret than A7 maps and can therefore be an attractive way of presenting
magnetic data. Basement topography can be estimated keeping S constant and ¢y and z
variable (Chapter 5.2. Variogram analysis can also be used to map (3, as proposed by Maus
and Dimri (1995b). However, due to the large window required for estimating 3, maps of
the scaling exponent are blurred and may be of limited practical use.

Apart from these applications, variograms provide space domain statistical models for
magnetic and gravity data. Such statistical models should be useful in filtering, gridding,

inversion and other processing techniques.
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Chapter 5

Variogram analysis applications I*

Due to the instability of magnetic minerals in oxidizing environments, the magnetization of
sediments is usually weak compared with the magnetization of the crystalline basement. In
this case, the crystalline basement is equivalent to the magnetic basement, being defined as
the uppermost occurrence of rocks carrying a significant magnetization.

AT magnetic maps are the smoother the greater the height of the observation plane
above the magnetic basement. This effect is quite prominent, as illustrated in Fig. 5.1. The
smoothness/ruggedness of the magnetic field is reflected in its power spectrum P(s), where
s is the 2D horizontal wavevector. The higher the relative power for small wavenumbers [s|,
the more rugged the appearance of the field. The power P(s) of the magnetic field in the

observation plane is related to the power of the field at basement level P,(s) by
P(s) = Py(s) e >, (5.1)

where z is the depth to the basement, hence, the parameter of interest. To obtain z from
eq. 5.1, an assumption on the power spectrum Py(s) of the field at basement level has
to be made. Assuming that the e ??®l term dominates the shape of the power spectrum,
spectral slope methods (Spector and Grant, 1970) are based on the implicit assumption
Py = constant. Hahn et al. (1976) proposed to subtract 10% from these ”white depths” for
a more reliable depth estimate. Recent years have seen a breakthrough in our understanding
of magnetic power spectra with the finding that the magnetic field at source level is self-
similar ("fractal”) and can be described by a model Py(s) o |s|™7, with v ~ 3 (Gregotski et
al., 1991; Pilkington and Todoeschuck, 1993). To correct for self-similar source, Pilkington
et al. (1994) suggested to divide the power spectrum by |s|~® before applying a spectral slope
method. However, even with this correction depth estimates remain unreliable (Maus and
Dimri, 1996), due to several reasons:

For spectral analysis the magnetic flight line data have to be transformed to a regular grid.

Since data density is typically 50 times higher along- than across-line, gridding invariably

*Published in Geophysics (Maus, Sengpiel, Siemon, Rottger and Tordiffe, 1999)
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FIG. 5.1: Synthetic AT magnetic data on profiles at different heights above a level basement
model with self-similar magnetization. To eliminate edge effects the profiles of 3 km length
are located over the center of a larger 5 km x 5 km model.

leads to a loss of information. Furthermore, gridded data are likely to be smoother than the
actual magnetic field. The subsequent steps of making the grid periodic, FFT and azimuthal

averaging again lead to distortions in the power spectrum.

Power spectrum estimation can be avoided altogether by transforming a model power
spectrum analytically to the space domain. This approach is intuitively appealing as it
means to carry the model without loss of information towards the data, instead of the
data towards the model. This difference in approach is illustrated in Fig. 5.2. A spectral
analysis in the wavenumber domain (left side) can be substituted by an equivalent auto-
correlation analysis (middle) or a variogram analysis (right side in Fig. 5.2) in the space
domain. Whether it is better to use the auto-correlation function (ACF) or the variogram
depends on the statistical nature of the data. As discussed in Chapter 4.2.1, magnetic and

gravity data are better described by variograms than by ACFs.

Here, we demonstrate the utility of the variogram analysis method on helicopter magnetic
data of the Omaruru Alluvial Plains in Namibia. First, we describe the spectral model
which is based on simplifying assumptions regarding the distribution of magnetization in
the crust. Although these assumptions are common to a variety of magnetic methods we
find it worthwhile to repeat them here. The use of a spectral model in terms of an equivalent
variogram analysis is outlined in the following section. After an introduction to the survey

area we illustrate different statistical methods of estimating depth on two sample areas.
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FIG. 5.2: The different possibilities of using a spectral model to invert magnetic data.

We then compare the variogram analysis depths for the whole survey area with the EM
resistivities to verify the boundary of the alluvial deposits. A comparison of basement reliefs
derived by variogram analysis and an automated spectral slope method (Spector and Grant,
1970) illustrates the improvements that are possible with the new method. Finally, we verify

basement depth with drilling results finding a reasonable agreement.

5.1 Spectral model

To derive a realistic model for Py(s) in eq. 5.1, one has to make assumptions on the sta-
tistical distribution of magnetization in the basement rock. The magnetization M(r) at a
location r is the vector sum of the induced magnetization M;(r) and the remanent magne-
tization M, (r). The magnetization M;(r), induced by the geomagnetic field N(r), can be
written as

M;(r) = X(r)N(r), (5.2)

where X(r) is a 3D susceptibility tensor. Assuming isotropic susceptibility X(r) = x(r)I,
where T is the identity matrix, and a constant inducing geomagnetic field N(r) = Ny sim-
plifies eq. 5.2 to

M;(r) = x;(r)Ny (5.3)

Here, x;(r) is the susceptibility that one would measure from a rock sample in a laboratory.
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While induced magnetization can be described by a scalar susceptibility x;(r), remanent
magnetization is a true vector field. However, to arrive at a simple statistical model, we have
to assume that any non-negligible remanent magnetization is aligned with the normal field.

Then, remanent magnetization can be described by

Mr(l‘) = Xr(r)N07 (54)

similar to the induced magnetization. Possible consequences of this simplifying assumption
are discussed in point 2 of section 5.2.3 on limitations of the method. Combining egs. 5.3

and 5.4, the magnetization M(r) can be expressed as

M(r) = [xi(r) + xr(r)]No = Xi1r (r)No. (5.5)

in terms of an apparent scalar susceptibility distribution y;;.(r) in the basement rock. In
the next step, a statistical expression for x;;,(r) has to be found.

Recent studies suggest that the susceptibility distributions x;(r) and xi;.(r) in the
Earth’s crust are self-similar (Pilkington and Todoeschuck, 1993; Pilkington et al., 1994;
Maus and Dimri, 1995b). A characteristic of self-similar random functions is that their power
spectrum P (k) is proportional to a power of the wavenumber k, namely P(k) o |k| ?, where
B is a variable scaling exponent. A self-similar distribution of the susceptibility x;,(r) in
the basement rock causes a self-similar magnetic field immediately above the basement (Pilk-
ington and Todoeschuck, 1993; Maus and Dimri, 1995b). In combination with eq. 5.1 this
leads to a spectral model

Par(s) = cs(;—]OV)QB[1/2,(5+1)/2] (02 + H?cos?0)° s exp(~2s2)  (5.6)

Dir(9)

for the AT magnetic field in a horizontal observation plane (Chapter 4.1.1). Here, s is
the horizontal wavevector, ¢ is the intensity of susceptibility variations, yg is the magnetic
permeability of vacuum, N is the vector of the geomagnetic field, B is the beta function
B(z,y) = I'(z)I'(y)/T(z + y), Dir(#) describes the anisotropy of the power spectrum as a
function of the angle # between the horizontal field component H and the wavevector s, 3 is
the 3D scaling exponent of the susceptibility distribution x;(r) in the basement rock and

z is the height of the observation plane above the magnetic basement.

5.2 Estimating magnetic depth

As illustrated in Fig. 5.2, inversion of a magnetic data set using a spectral model can be
carried out in several different ways. KEarlier spectral analysis methods pursued the left
path in Fig. 5.2. Depth was estimated from linear sections in the power spectrum (Spector

and Grant, 1970). There was no analytical expression for the entire power spectrum which
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could have been shifted to the space domain. Depth therefore had to be estimated in the
wavenumber domain. In contrast, equation (5.6) provides a model for the entire 2D magnetic
power spectrum. This spectral model has an exact variogram counterpart in the space
domain which is obtained by the integral transform (Yaglom, 1986, p. 435)

V(r) = /_ °:o /_ 2[1 — cos(r - 8)] Par(s) du dv, (5.7)

where s = (u,v) is the horizontal wavevector and 7 is the corresponding vector separation
in the space domain. A variogram V' (7) depicts the expected square of the difference be-
tween two data values as a function of their vector separation 7. With equation (5.7) a
spectral analysis in the wavenumber domain using eq. 5.6 can be substituted by an equiva-
lent variogram analysis in the space domain. Hence, instead of computing and interpreting
power spectra, we analyze variograms. The most important advantage is that variograms
can be estimated directly from the flight line data, making use of their higher along-line
resolution as compared to grids. Furthermore, computing variograms is simple and straight-
forward. Variograms are also easier to understand than power spectra, reducing the risk of
mis-interpretation.

The model variogram defined by egs. 5.6 and 5.7 is governed by three unknowns: z, ¢
and 8. A smooth magnetic field may be caused either by a great depth to source z or a
smooth distribution of basement magnetization reflected in a high value of S. Due to this
trade-off, only one of the parameters z and 8 can be resolved at a time. In areas without
major changes in the geology of the basement it is reasonable to assume a constant scaling
exponent of the susceptibility distribution (Maus and Dimri, 1995b). For the purpose of
deriving a relief of the magnetic basement, the optimum values of z and c, are estimated
from the variograms, keeping 3 constant. Using a lower scaling exponent S leads to greater
depth estimates, and vice-versa (Maus and Dimri, 1996). Thus, depth estimation can be
calibrated by choosing the constant scaling exponent in such a way that the inversion yields

the average sensor altitude for data over outcropping basement.

5.2.1 Inversion

The optimum values for z and ¢, are obtained by inversion. An appropriately sized window
is moved over the magnetic data set, as illustrated in Fig. 5.3. Plots of model variograms
for different values of z indicate that the window size must be at least five times the max-
imum depth to be resolved (Figure 4.5). The accuracy of depth estimates increases with
window size, while the lateral resolution decreases. From our experience, a window size of
around twenty times the maximum depth is a good compromise between lateral resolution
and accuracy of depth for survey areas with shallow basement. For each position of the win-
dow, the variogram of the data within the window is computed and compared with model

variograms for a range of z values. The model variograms can be computed beforehand to
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FIG. 5.3: A window is moved over the survey area (a). For each window position the vari-
ograms of the intersecting flight lines are computed. The mean variogram is then compared
with model variograms to find the optimum depth in a least squares sense. Consecutive
depth estimates are plotted here as a profile (b).

save computing time. The best fitting model variogram provides an estimate for the depth
to basement. To focus the analysis on to the present window position, a linear trend is
removed from the magnetic data of each flight line section before computing its variogram.
The model variograms are modified accordingly. Details of this detrending are discussed in
Chapter 4.4.3. We utilize only 1D along-line variograms, averaged over adjacent flight lines.
In principle, a 2D variogram could be computed from the flight line data within each window.
However, the 2D variograms of magnetic data are anisotropic and an analytical solution to
the integrals in equation (5.7) does not exist. Apart from the numerical difficulties of a 2D
variogram analysis, accuracy may also be affected by line leveling errors. In contrast, the

1D variogram analysis does not require any line leveling at all.

5.2.2 Misfit function

From our experience, variograms of magnetic data have lim,_,o V' (d) = 0 and the main depth

information is contained in low lags 7. This motivates using a misfit function

Misfit = Y [In Veot(73) — In Vinoder(73)]° (5.8)

for optimizing depth. Before processing a survey, the assumption limy o V' (d) = 0 should
be verified by examining the variograms of sample areas. If the assumption does not hold,

eq. (5.8) may have to be modified.
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TABLE 5.1: Variogram analysis depth estimates from a real data variogram. Estimated
depth strongly depends on the assumed direction of basement magnetization. For exam-
ple, a magnetic profile over a vertically magnetized basement (incl.= 90°) at 84 m depth
is as smooth as a profile over a basement at 52 m depth with horizontal magnetization
perpendicular to the profile direction (incl.=0°, decl.=90°).

declination

0° 16° 90°
0° |98 m |96 m | 52 m

inclination 64° | 86 m | 86 m | 81 m
90° | 84 m |84 m | 84 m

5.2.3 Limitations

In the following, we list the known sources of error in variogram analysis depth. These

limitations are primarily due to the inherent non-uniqueness of the magnetic inverse problem.

Similar problems can therefore be expected with all magnetic depth estimation methods.

1.

Nonuniqueness between greater source depth and smoother source distribution leads
to a trade-off between z and 5. The necessary assumption of 8 = constant could be

violated by changes in basement lithology.

Nonuniqueness of depth versus direction of magnetization is summarized in Table 5.1.
A NS profile at the magnetic equator over an induced magnetic source carries stronger
texture than a profile in EW direction (hence the well known recommendation to fly
NS rather than EW at low magnetic latitudes). The smoothness of an EW profile
corresponds to the smoothness of a NS profile at almost twice the altitude above
basement. At the magnetic equator, a depth estimate of 98 m from a NS profile could
actually be due to a basement at 52 m depth carrying an EW remanent magnetization.

Hence, strong horizontal remanent magnetizations are a potential source of error.

Magnetic anomalies caused by basement topography cannot be distinguished from
anomalies due to intra-basement magnetization contrasts. For example, this can lead to
overshooting depth estimates at steep topographic gradients. The ensuing topographic
magnetic anomaly constitutes a long wavelength feature, increasing the long to short
wavelength power ratio, leading to over-estimated source depth.

Care must be taken to eliminate time variations of the magnetic field. Noisy sections
of the flight line data have to be excluded from the analysis because they bias depth

towards smaller values.

Surface or intra-sediment magnetizations obviously reduce depth estimates.
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FIG. 5.4: Location and approximate flight lines of the 100 km x 26 km helicopter survey.

5.3 Survey area

In line with the agreement on technical co-operation between Namibia and Germany an
area of 100 km x 26 km was surveyed by airborne geophysics (Fig. 5.4) in order to identify
proposedly groundwater bearing paleochannels of the Omaruru River. The helicopter survey
was flown at constant terrain clearance, the magnetic sensor at approximately 60 m and the

EM system at 40 m above terrain.

5.3.1 Geology

The OMAP drainage basin has been involved in tectonic movements since Tertiary times,
one faulting event has been dated at Middle to Late Pleistocene or Recent. Seismic activity
along two sets of Landsat lineaments, one of which is parallel to the predominant north-
easterly direction of Damara faults, suggests that processes of faulting and uplifting are still
active (Bittner et al., 1994).

et al., 1994) (Fig. 5.5) can be subdivided into two major components, the older Damara Se-

The stratigraphy of the test study area in Namibia (Bittner

quence (Late Proterozoic) comprising granitic, quartzitic and quartz-mica schist lithologies,
intruded by mainly northeasterly trending dolerite dikes of Triassic age, and the overlying
alluvial deposits which are of Kalahari age (Tertiary to Recent). These so-called Omaruru

Alluvial Plains (OMAP) were the target for groundwater exploration (Nawrowski, 1993).
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FIG. 5.5: Geological sketch of the survey area, based on the geological map of Namibia
1:1.000.000 (Miller and Schalk, 1980). (A) Alluvium, (G) Granites, (Nsc, Nu, Nk, Nup,Ngl)
Damara Orogen Sequence comprising metamorphosed acid volcanics, mica shists and gneissic

leucogranites.
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FIG. 5.6: Shaded AT total field anomaly map (Paterson and Reeves, 1985) of the survey
area with present Omaruru River. Two sample areas are indicated as dashed rectangles.
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FIG. 5.7: Map of the intensity c,, estimated by variogram analysis from single 500 m along-
line sections of AT data, assuming 8 = 2.6 and z = terrain clearance. Non-magnetic alluvial
deposits along the center of the area are reflected in low ¢, values.
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The south-easterly displacement of Omaruru drainage paths was probably tectonically
induced. Channels have a tendency to migrate down tectonic tilt (Leeder and Alexander,
1987). Variations in channel discharge due to sea-level change, and variations in sedimen-
tary recharge due to climatic change could have been further reasons for channel migra-
tion (Alexander et al., 1994).

5.3.2 AT and c¢; magnetic maps

The total field anomaly map of the survey area is shown in Fig. 5.6. By variogram analysis,
the source intensity c; was estimated from the AT flight line data using a 500 m window along
single lines and further assuming 5 = 2.6 and z = terrain clearance. This high resolution
¢, intensity map is shown in Fig. 5.7. The ¢; map provides superior near surface resolution
of magnetic source, since ¢, is estimated from very short along-line AT variations, hence,
exactly the short wavelength information that is lost in gridding AT data. The c¢; map is
easy to interpret. In contrast to AT, ¢, is high when magnetization is high and low when

magnetization is low.

5.4 Magnetic depth from two sample areas

To illustrate the spectral methods discussed above, we have selected two sample areas of
5 km x 20 km which are indicated in Fig.5.6. The first area has outcropping basement
while the second area is situated over the center of one of the main paleochannels. From
the drilling results discussed below the depth to basement in the center of the second area

is around 200 m, but probably shallower at its sides.
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FIG. 5.8: Power spectra of the two areas indicated in Fig. 5.6 with a spectral slope method
interpretation. Note the equal difference in depth of 110 m in both wavebands.

5.4.1 Depth from the spectral slope

In previous spectral analysis methods depth is estimated from the slope of the azimuthally
averaged power spectrum, as demonstrated in Fig. 5.8. These absolute or white depths are
at 280 m and 500 m in the first area while they are at 390 m and 610 m in the second area.
Pilkington et al. (1994) have pointed out that these white depths overestimate true depth.
Indeed, it is unlikely that a horizontal source interface would cause a linear section in the
power spectrum at all.

Let us now examine relative depth. The difference in slope between areas 1 and 2 is
identical in both wavebands and corresponds to a relative difference in depth of 110 m. If we
upward continue the spectrum of the paleochannel area by 110 m it matches the spectrum of
the area with outcropping basement. This can be interpreted in such a way that the spectrum
of the basement magnetic field is identical in both areas, while the vertical distance to the
observation plane is greater by 110 m in the paleochannel area. The difference in slope in a
fixed waveband therefore provides an estimate for the relative depth to the basement, while

the absolute white depths are meaningless.

5.4.2 Depth from the entire spectrum

Instead of comparing slopes in fixed wavebands, the depth factor can be analyzed with greater

precision by using a model for the entire power spectrum. This approach is illustrated in
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FIG. 5.9: Same power spectra as in Fig. 5.8 interpreted using a self-similar e=2"*s~3 model.

Fig. 5.9. Here, a self-similar model e~?**s=#+! is fit to the power spectrum. The best
least squares fit for a constant [ provides an estimate of relative basement depth. If the
correct value of § is known, then even the absolute depth to basement can be obtained by
this approach (Maus and Dimri, 1996). Here, we used = 4, proposed by Pilkington and
Todoeschuck (1995) as the mean scaling exponent of continental crust. Besides explaining
the full shapes of the two power spectra, this approach also leads to realistic estimates of
absolute depth from the observation plane to the basement. Subtracting the average sensor
clearance of 61 m and 56 m gives basement depths below terrain of 59 m and 174 m for the

outcrop and the paleochannel area, respectively.

5.4.3 Depth from the variogram

The resolution and accuracy of depth estimation can be improved further by shifting the
analysis to the space domain and analyzing variograms, as illustrated in Fig. 5.10. Subtract-
ing the sensor clearance from the model depths gives estimates of 12 m and 184 m for the
depth below terrain. In particular for outcropping basement, the variogram analysis depth
of 12 m below terrain is much better than the power spectrum depth of 59 m below terrain
(Fig. 5.9). The greater power spectrum depth in the latter case is probably caused by the
smoothing effect of gridding. The grid does not reflect the full ruggedness of the magnetic

field over outcropping basement.
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FIG. 5.10: Modified variograms of the two areas in Fig. 5.6 together with the best fitting
model variograms indicated as solid lines. For better comparison, the paleochannel variogram
is amplified by a factor 4.0.

5.4.4 Calibration of depth

As described above, the scaling exponent § has to be kept at a constant value to be able
to resolve depth z. This corresponds to the assumption of a constant shape (but variable
amplitude) of the magnetic power spectrum at basement level. Indeed, the spectral slope
method is based on the same implicit assumption. A higher scaling exponent leads to shal-
lower depth estimates and vice versa. Looking at variogram analysis depth over outcropping
basement we obtain depths close to the sensor terrain clearance for 5 = 2.6. It is not clear
why this value is so much lower than § = 4 which gives a realistic interpretation of the power
spectra. Both values should in theory be identical. Possible reasons for the deviation are
the smoothness of grids, leading to high power spectrum (3, and the subtraction of a linear

trend before estimating the variograms, leading to low variogram £.
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FIG. 5.11: Variogram analysis depths. BH1, BH2 and BH3 indicate the positions of three
ground water exploration wells (see table 5.2)

5.5 Results for the entire survey area

We utilized a scaling exponent of 5 = 2.6 and a window size of 5 x 6 km (along-line x across-
line) for the variogram analysis (Fig. 5.3). Within this window we calculated the variograms
for sections 3 km in length, one every 100 m, and stacked the variograms of the sections along-
line as well as across-line. Hence, the resulting variogram is an average of 21 (along-line)
x 7 (across-line) = 147 variograms. This gives a better result than using 5 km variograms and
stacking only across-line. We moved the window along-line by 100 m increments. Across-line
the window position was incremented by one flight line at a time, corresponding to 1 km

intervals. The result for the entire survey is shown as depth below terrain in Fig. 5.11.
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FIG. 5.12: Map of p, from a 5-layer inversion of measurements from an active 3-channel EM
system

5.5.1 Depth versus EM resistivities

To some extent, variogram analysis depths below terrain can be verified by a comparison
with measurements from a 3-channel active EM system. The map of p, from a 5-layer
inversion (Sengpiel, 1988), shown in Fig. 5.12, provides a horizontal resistivity cross-section
at approximately 30 m depth. High resistivity indicates crystalline basement. Low resistivity
is due to sediments. Very low resistivities can be caused by saline water or clay. Areas of
low resistivity in Fig. 5.12 should therefore coincide with areas of depth greater than about
20 m in Fig. 5.11. All in all, the agreement between the two maps is good. Some structures
which are small relative to the 5 km by 6 km variogram analysis data window are missing
in the variogram analysis depth map. This problem is apparent at the high (right) and low
(left) margins of the survey area, where narrow paleochannels are poorly resolved. The wider

channel in the center of the study area, on the other hand, is mapped quite accurately.
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TABLE 5.2: Drilled versus predicted basement depths

BH1 BH2 BH3
lithology | meta-basalt | granite | amphibolite

drilled depth 141 m 198 m 110 m

variogram analysis depth 163 m 182 m 34 m

error (off sensor) 11 % 6 % 45 %

5.5.2 Basement relief

To display the estimated depth in such a way that paleochannels can be identified, we first
subtracted the altitude a.m.s.l. of the Omaruru river at the intersection with each flight line
from the topography a.m.s.l. along-line. The Omaruru river then flows always at altitude
zero, while it actually descends from around 900 m a.m.s.l. in the North-East to around
300 m in the South-West. This relative ground topography is displayed in Fig. 5.13. We
then added the negative basement depth estimates, resulting in a basement relief relative
to the present day Omaruru river. The result shown in Fig. 5.14 clearly indicates several
paleochannels.

In Fig. 5.15 the corresponding basement relief obtained by an automated spectral slope
method is displayed. A window of 6 km x 6 km was moved over the magnetic grid of
the survey area. The power spectrum was estimated for each window position using a
commercially available software package. This software also provides an estimate of 3-point
slope. By trial and error we found the waveband where relative differences in slope give the
best estimates of basement depth. As predicted above, absolute depth below terrain ranging
from 550 m to 800 m is quite off the mark. Nevertheless, subtracting 550 m leads to a crude

but reasonable basement relief.

5.5.3 Drilling results

Of nine proposed groundwater exploration wells, only three were drilled. (BH1, BH2, and
BH3 indicated in Figs. 5.11, 5.13 and 5.14). After 129 m of gravel, sand and clay, BH1
encountered weathered doleritic basement sand, weathered meta-basalt at 141 m and fresh
meta-basalt at 160 m (variogram analysis prediction 163 m). BH2 found basement sand
(magnetite, mica, feldspar) at 192 m and hit a granitic basement at 198 m (variogram
analysis prediction 182 m). Further downstream, BH3 found dark basement sand (magnetite,
hornblende) at 96 m and an amphibolitic basement at 110 m (variogram analysis prediction
34 m). Unfortunately, no susceptibilities were measured. All wells were dry.

Drilling results versus predicted depths are summerized in Table 5.2. Taking into

account, the 60 m flight altitude of the magnetic sensor, prediction errors for BH1 and BH2
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FIG. 5.14: Topography of the magnetic basement obtained by adding the negative variogram
analysis depth estimates of Fig. 5.11 to the topography of Fig. 5.13. Our interpretation of
possible Omaruru paleochannels is indicated in red. Three groundwater exploration wells
BH1, BH2 and BH3 were dry.
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are around 10%. In contrast, the prediction for BH3 is quite off the mark. While variogram
analysis depths (Fig. 5.14) correctly indicate the continuation of the central paleochannel,
its depth is grossly underestimated. The channel is probably too narrow here to be resolved

accurately by a 5 km x 6 km variogram analysis window.

5.6 Discussion and conclusions

The basement topography of the Omaruru Alluvial Plains has been derived by variogram
analysis (variogram analysis) of an aeromagnetic survey. The method has been designed
to make maximum use of the measured data. We have discussed the non-uniqueness of
magnetic depth solutions. Besides depth, properties of magnetic mineral distribution and
the direction of magnetization influence the smoothness of the magnetic field. Furthermore,
steep gradients in basement topography give rise to long wavelength magnetic anomalies
which are not discernible from deep seated intra-basement magnetization contrasts. In view
of these inherent difficulties of the magnetic method, our result has remarkable resolution
and accuracy. In comparison with the earlier spectral slope methods, variogram analysis has

the advantage of

1. making use of the short wavelength along-line information, which is otherwise lost in

gridding. This is the key to reliable depth in shallow sedimentary deposits.

2. having no restriction on the shape of the survey area. Variogram analysis can even
process single profiles. In contrast, power spectra require rectangular (usually square)

subareas.

3. accounting for the fractal distribution of magnetic minerals by using a self-similar

spectral model, leading to more accurate depth estimates.

4. avoiding the difficulties (e.g. edge effects) of wavenumber domain power spectrum

estimation by using straightforward space domain variograms

Due to 1 and 2, variogram analysis has a strong advantage over power spectrum methods
in shallow basins. In deep basins, with basement depths larger than flight line spacing,
even grids should contain sufficient high wavenumber information to estimate reliable depth.
A power spectrum method could then yield accurate depth, provided the fractal nature of
magnetic source is taken into account, e.g., by using eq. (5.6) as a spectral model. The
question remains, however, why the data should be arduously transformed to wavenumber
domain, when spectral models can be analytically transformed to space domain without loss
of information, instead. We argue that a data variogram is easier to estimate and should
therefore carry more reliable depth information than a power spectrum, even for surveys of

deep basins.
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Finally, variogram analysis has an interesting spin-off in terms of a near-surface magne-
tization intensity map (Fig. 5.7). Variogram analysis intensity is high when magnetization
is high, and vice versa, simplifying interpretation. Using very short flight line sections for
variogram estimation, maximum use of short wavelength along-line signal can be made. This
amplifies small structural features which are usually lost in gridding. Variogram analysis in-
tensity maps could therefore be helpful in detecting weak intra-basinal signatures from high

resolution aeromagnetic data in petroleum exploration.
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Chapter 6

Variogram analysis applications IT*

Depth can be estimated from magnetic data by inverting individual anomalies, e.g. by
Euler deconvolution (Reid et al., 1990), or by statistical methods which make use of spectral
properties of the field. Spector and Grant’s original method (1970) can be improved by
taking into account the self-similar (fractal) nature of source (Pilkington et al., 1994; Maus
and Dimri, 1996). Directly analyzing line data using variograms (Chapters 4 and 5) leads to
further significant improvements in accuracy and resolution. The aim of the study described
in this chapter is to verify the quality of variogram depth on synthetic and real data.

We generate a self-similar magnetized basement and synthesize magnetic data in flight
lines above this model (Fig. 6.1). Resolution of alternating slopes and channels depends
on the relative size of the data analysis window. Features larger than this window size
are generally well resolved. Variogram depth is correct on average, hence, it is unbiased.
However, depth estimates can over- and undershoot at topographic gradients. Basement
ruggedness, unknown scaling exponent of source and non-negligible sediment magnetization
may cause further problems, which are studied here. An interesting question is, whether it
is preferable to fly along or across the basement topographic trend. The best strategy is to
do both, namely, to fly with twice the line spacing in both directions. This regular mesh
offers the optimum basement resolution per line km surveyed.

Finally, we process a magnetic survey of the Kuiseb Dune Area. Interpretation is com-
plicated by high instrument noise and variable surface topography. Comparing basement
reliefs with drilling results in 15 locations we find an optimum data analysis window size of
5400 m for this survey. This is disappointingly large. Arguably, resolution would have been

better if survey lines had followed the dune valleys.

*Published as an expanded abstract, SEG 70th annual meeting (Maus, Rottger and Sengpiel, 2000)
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FIG. 6.1: Basement topography is superimposed on a 2D equivalent layer with a self-similar
distribution of susceptibility. Depth is estimated from synthetic magnetic data computed
for flight lines in horizontal observation planes above the basement model. Note that the
vertical scale of the model is strongly exaggerated.
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6.1 Synthetic modeling

We generate realistic magnetic flight line data from self-similar source models with imposed
topography. Depth estimated from this data is compared with true model depths (e.g.
Fig. 6.1) to test the variogram analysis method.

6.1.1 2D equivalent layer models

Any 3D magnetization model can be replaced by an equivalent layer of induced magnetization
at the model surface, drastically reducing computation time. A self-similar 3D susceptibility
distribution with scaling exponent 3 causes a magnetic field with scaling exponent 5 —1 in a
horizontal observation plane (Maus and Dimri, 1994). The same magnetic field is caused by
an equivalent 2D susceptibility layer with scaling exponent 5 + 1. Hence, we can substitute

a 3D source model with scaling exponent 8 by a 2D layer with 5 + 1.

6.1.2 Self-similar grid synthesis

We fill a grid with random numbers in the wavenumber domain in such a way that the
corresponding grid in the space domain has the desired spectrum (Maus and Dimri, 1996).
With this method grids can be synthesized which are self-similar up to lags of around 1/4th
of its side length. The self-similarity of the grid G(z,y) can be verified on its azimuthally

averaged variogram V(1)
V(r) =(G(z,y) - Gz +dz,y + dy)]*), (6.1)

where 7 = /dz%Z + dy?. The variogram of a self-similar grid with scaling exponent 3 is
proportional to a power of the lag 7, as in V(1) oc 72 2(Yaglom, 1986). Figure 6.2 shows
the variogram of a 2048 x 2048 grid with § = 3 that was produced with this method. While
its variogram should increase linearly with the lag, this is only the case for lags up to 1/4th
of the grid dimension. However, in the following experiments the data analysis window size
is always smaller. Hence, grids synthesized with this method are suitable for the present

investigation.

6.1.3 Synthetic magnetic data

Once a self-similar grid is synthesized, the desired models can be produced by superimposing
topography. This is valid if vertical variations are small compared with the horizontal scale
of the equivalent layer. We use a long strip of basement. Topography is 1D in the sense
that it varys along the strip and is constant perpendicular to the strip. Two data sets are
synthesized for every model. One with flight lines parallel to the strip (across topography)
and one with lines perpendicular to the strip (Fig. 6.1). Magnetic AT-data are computed
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FIG. 6.2: Variogram of a 20482 model grid produced by the FFT method. The grid is
self-similar up to lags of around 1/4th of its side length.

for a vertical inducing field. In the models, every grid cell represents 10 m x 10 m in nature.
However, all model dimensions and depths may be scaled by a constant factor.

6.1.4 Variogram analysis algorithm

We use the same algorithms as in Chapters 4 and 5. The only new feature is that when
we estimate depth in a particular location, we average variograms weighted by a Gauss bell
shaped function exp(—r?/0?). At r = o the weight function falls off to e~ a2 0.37. We refer
to the diameter 20 as the effective window size. Contributions from further than r = 3o,
where the weight drops to below 10™*, can be ignored. Using this weight function does not
improve the accuracy of depth, but leads to a reasonably smooth basement relief. With
uniform weights, instead, the relief shows rectangular or circular artifacts reflecting the cut-
off radius. In the synthetic modeling we use an effective window size of 4 km and estimate
depth from profiles oriented across as well as along topography. We also estimate a joint

depth, where we simultaneously invert half of the profiles in both directions.
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6.1.5 Sloping basement

Topography with alternating gradients of increasing slope is superimposed onto the base-
ment strip. Estimated depth is shown in Fig. 6.1. The first three slopes are mapped rather
accurately. The length of the third slope is 4 km and thus equal to the effective window
size used. Features smaller than this window size are not resolved. Depths from the across
topography profiles tend to overshoot. The reason is that when a profile runs from deep
basement into shallow basement, a topographic magnetic anomaly ensues. This long wave-
length anomaly increases the ratio of long to short wavelength power which is interpreted
as greater depth to source. Thus, topographic anomalies can lead to overshooting depth
estimates. Along-topography depth does not show this artifact and the most accurate depth

is obtained from the bi-directional inversion.

6.1.6 Paleochannels

In locating paleochannels, we would like to know how broad a channel must be in order to
be identified by the variogram analysis. We indent channels of decreasing width into the
basement strip (Fig. 6.3) and try to locate them using an effective 4 km x 4 km variogram
analysis window size. We find that a channel has to be roughly as broad as the size of the

analysis window in order to be identified reliably.

6.1.7 Unknown scaling exponent

In practice, the scaling exponent of the basement magnetization can only be guessed. As
mentioned above, a susceptibility grid with 5 = 3 produces a magnetic field with v = 1. For
Figure 6.4, depth was therefore estimated using scaling exponents v of 0.5, 1, and 1.5. It
can be seen that a 0.5 uncertainty in the scaling exponent leads to an uncertainty of around
20% in absolute depth. This uncertainty of depth versus smoothness of source follows from

the inherent non-uniqueness of the magnetic inverse problem.
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6.1.8 Rugged basement

Small scale variations in basement topography cannot be resolved by variogram analysis.
Instead, they lead to a bias in basement depth estimates. A source grid is combined with
a self-similar topography grid, representing a basement with self-similar magnetization as
well as topography. The superimposed topography grids with g = 2 are chosen to have zero
mean value, 10 m, 20 m, and 50 m standard deviation, and maximum values of 50 m, 100 m,
and 250 m, respectively. We find that a rugged basement leads to reduced depth estimates
(Fig. 6.5). As a rule of thumb, the estimated depth lies about half-way between the mean

and the minimum depth to basement.

6.1.9 Non-negligible sediment magnetization

High resolution magnetic surveys are increasingly employed to map intra-sediment anomalies.
Does this contradict the basic assumption of a negligible sediment magnetization in the
variogram analysis? We investigate how strong the magnetization of sediments may be
without affecting depth estimates. Assuming a survey terrain clearance of 50 m, sediment
magnetic fields of decreasing strength are added to the magnetic fields of basements at depths
of 100 m, 200 m and 300 m, respectively. Estimated depth is plotted against the ratio of
basement to sediment magnetization in Fig. 6.6. The result is reassuring. Even for the
greatest depth, corresponding to one tenth of the window size, a susceptibility contrast of
around two orders of magnitude is sufficient to allow reliable depth estimation. This is not

a very strong contrast for a typical basin.
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FIG. 6.7: Survey location with a sketch of the flight lines

6.2 Helicopter survey of the Kuiseb Dune Area

The river Kuiseb flows along the northern margin of the Kuiseb Dune Area in Namibia and
ends in Walvis Bay (Fig. 6.7). Outcropping basement north of the Kuiseb is covered by up
to 200 m of sand and sandstone in the south (Fig. 6.8). On its way, most of the water oozes
away and statistically the Kuiseb reaches the sea only once in ten years. Wells along the
riverbed make use of the Kuiseb groundwater resource, but part of the groundwater is also
known to seep into the dune area and re-emerge on the coast, feeding freshwater lagoons.
In 1992, the Kuiseb Dune Area was surveyed by helicopter to identify these seepage paths
beneath the sand dunes. The helicopter carried a radiometer, magnetometer and an active
3-channel EM system. 12000 line-km were flown with a line spacing of 0.4 to 1 km and a tie
line spacing of 5 to 10 km (Fig. 6.7). EM resistivities indicated some high resistivity fresh
water channels. Subsequent drilling confirmed these channels, but fresh water yields were
insignificant.

Here, we estimate depth from the magnetic data of the survey by variogram analysis.

Two data examples with shallow and deep basement are shown in Figures 6.9 and 6.10,
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FIG. 6.9: Five adjacent magnetic profiles over an area with outcropping basement. The
proximity of the basement is reflected in a rugged appearance of the magnetic field.
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FIG. 6.10: Five adjacent magnetic profiles over an area with deep basement (depth below

terrain at test drilling point TP17 around 110 m). The large distance between sources and
observation plane leads to a smooth magnetic field.
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FIG. 6.11: Basement relief estimated using a variogram analysis window size of 4500 m. The
relief for the optimum window size of 5400 m has smaller deviations from drilled depth, but
shows less detail (see Fig. 6.13). Paleochannels inferred from the map of EM resistivities are
shown in red.
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FIG. 6.12: Example of an area with low magnetic signal and high noise (in the order of
several nT). At short to intermediate wavelengths the noise is stronger than the signal,
which leads to reduced depth estimates (true depth at TP7 is 118 m, estimated to 27 m).

respectively. The estimated basement topography for the entire survey is given in Figure 6.11.

6.2.1 Vertical versus lateral resolution

Variogram analysis of this magnetic data set faces difficulties. The sand dunes of up to 100 m
in height are crossed by the survey lines, which were flown at constant terrain clearance
(draped survey). Upward continuation to a common reference height is not possible for
profile data without making assumptions on the source magnetization. Thus, our observation
”plane” actually consists of measurements vertically separated by as much as 100 m, while
the depth to be estimated is of the order of 150 m! The presence of instrument noise of up to
several nT causes further problems in areas of weak basement magnetization, as illustrated
in Figure 6.12

To obtain meaningful depth, large variogram window sizes have to be used. The larger
the window, the more accurate the depth estimate. However, this increased accuracy trades
off against a decreased lateral resolution of the basement relief. We infer the mean error of
the relief from drilled basement depth in 15 locations. Plotting the mean error against the
effective window size (Fig. 6.13), we find that accuracy of depth improves up to an optimum
window size of 5400 m, i.e. window radius of 2700 m, where the mean relative error is 15%
and the absolute error is 25 m. For even larger windows, the increasing accuracy is offset by

the decreasing lateral resolution.
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FIG. 6.13: Mean relative error of depth estimates at the drilling locations versus the data
window size used in estimating the basement relief. Accuracy of depth increases with the
data window radius up to 2700 m. Subsequently, errors increase again due to the decreasing
lateral resolution of the relief. Assuming a depth of 150 m below observation level at every
drill site gives an unbiased depth estimate with an error of 26%, indicated here as the ”zero
information level”.

Figure 6.11 shows the basement relief for a window size of 4500 m. The large window
size required is primarily due to the varying flight altitude above basement. One could try
to upward continue the profiles to a reference plane sloping towards the sea. However, this
requires assumptions on the source magnetization. In an alternative approach, we discard
all data measured above the mean local observation height, shedding 50% of the data. Due
to the chopped up profiles, 3/4 of the variograms become incomplete and must be discarded.
Consequently, instead of improving, depth estimates deteriorate. Attempts to incorporate
the tie lines in a joint inversion also fail to improve the relief. For this purpose the tie line

separation would have had to be narrower.

6.3 Discussion and conclusions

Our tests show that variogram analysis depth is unbiased and accurate, subject to certain

limitations. Some of these limitations are common to other methods as well.

6.3.1 Conclusions from the synthetic modeling

Comparing variogram depth with true model depth we conclude that
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1. the effective data analysis window size must be at least 10-20 times larger than the
depth to be resolved

2. topographic features are reliably identified only if they are larger than the window size
(Figs. 6.1, 6.3)

3. for rugged basement topography, estimated depth is about half-way between the mean
and the minimum depth to basement (Fig. 6.5)

4. due to the inherent non-uniqueness of the magnetic inverse problem, a 0.5 uncertainty
in 8 (which is rather high) leads to a 20% uncertainty in absolute depth

5. a sediment magnetization up to two orders of magnitude less than the basement mag-

netization does not disturb depth estimates (Fig. 6.6)

6. depth estimated from profiles along constant basement depth is more accurate than
from profiles across topography. Hence, flight lines should be aligned with topographic
trend to avoid topographic anomalies. Tie lines should be flown dense enough to be
useful as an additional source of statistical information. In particular, joint inversion
of wide spaced bi-directional profiles gives more accurate depth than a dense equi-

directional set of survey lines (Figs. 6.1, 6.3).

6.3.2 Discussion of the Kuiseb Dune Area survey

Variable dune topography and high instrument noise make it difficult to estimate the base-
ment relief from the Kuiseb Dune Area magnetic data. The absolute error of around 25 m
against drilled depth is likely to be even larger at the survey boarders, where the analysis
window is only half covered with data. While basement depths of 100 m found for Walvis
Bay are realistic, the strong gradient to even greater depths in the West is not. The fresh
water channel feeding the wetland at Sandwich Harbour has been identified correctly. Pre-
sumed troughs along the coast roughly agree with areas of high EM resistivity. It would be
interesting to verify the existence of these troughs by drilling.

Most likely, depth estimates would have been more accurate if survey lines had followed

the dune valleys and more tie lines had been flown.

6.3.3 A recommendation for aeromagnetic survey design

Our synthetic modeling shows that the information in tie lines could significantly improve
depth estimates, provided that the tie lines are not spaced too far apart. In fact, for basement
depth estimation, flying a regular mesh would probably give the optimum accuracy at least

cost.
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Chapter 7

Improved ocean geoid resolution from
retracked ERS-1 satellite altimeter
waveforms™

Since the publication of the first satellite gravity maps (Haxby et al., 1983; Rapp, 1983),
spatial wavelength resolution of satellite gravity has improved considerably, primarily due
to the denser track spacing of 6 km and 8 km at the equator during the geodetic missions of
Geosat (1985-1990) and ERS-1 (1991-1996), respectively. Satellite gravity is computed by
geodetic Fourier methods (Schwarz et al., 1990) from gridded geoid profiles (Haxby et al.,
1983) or vertical deflection of geoid (Sandwell and McAdoo, 1990). See Olgiati et al. (1995)
for a comparison of the two methods. A detailed description of marine gravity mapping
from satellite altimetry is given by Sandwell and Smith (1997). Satellite altimeters measure
mean sea surface height, which is controlled primarily by the Earth’s gravity field, but is also
subject to tides, ocean currents and atmospheric effects. In satellite gravity these secondary
effects are regarded as noise. After applying various corrections, the sea surface heights serve
as estimates of the ocean geoid.

Resolution of along-track geoid profiles can be defined as the wavelength at which the
mean square coherence between two exact repeat tracks falls to below 0.5 (Marks and Sailor,
1986). With this definition along-track geoid resolution has improved from 110 km for 1975-
1978 Geos-3 data to 50 km for 1978 Seasat data (Marks and Sailor, 1986). In a detailed study
of along-track geoid resolution, Yale and Sandwell (1995) find a global average resolution of
38 km and 43 km for pre-edited Geosat and ERS-1 data, respectively. Along-track resolution
can be improved to below 30 km by stacking corresponding tracks of the exact repeat missions
(ERM), called multi-disciplinary phase for ERS-1. However, the ERM have a track spacing
of 164 km (Geosat) and 80 km (ERS-1) which is too wide for high resolution gravity mapping.
During the geodetic missions, on the other hand, tracks are not repeated and it is essential

to extract as accurate geoid information as possible from every recorded track. This can be

*Published in Geophysical Journal International (Maus, Green and Fairhead, 1998)
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achieved by reprocessing the raw radar waveform data.

After outlining the basic principles of satellite radar altimetry, we propose a simplified
waveform model to improve tracking. Instead of tracking individual travel times, we process
a whole sequence of waveforms simultaneously, using a polynomial spline to represent the
geoid. To separate geoid signal from noise, one requires a spectral model for the true geoid.
Using a relationship between geoid and gravity, we infer the geoid spectrum from large scale
land and marine gravity grids. The expected spectrum of the true geoid is then utilized
to constrain the smoothness of the spline geoid solutions, thus suppressing noise already
at the tracking stage. We tested the algorithm on 3 repeat cycles of the ERS-1 ERM.
Coherencies indicate a significant improvement in along-track resolution, in particular for

rough sea states.

7.1 Basic principles

After correcting for tides and currents, as far as possible, sea surface height provides an esti-
mate of the ocean geoid N which is related to the gravity potential V' by Brun’s approximate

formula
V(z,y,0) = goN(z,y), (7.1)

where g, is the normal gravity acceleration. Satellite altimeters are able to measure the sea
surface height by sending down radar pulses that are reflected at the sea surface and recorded
back on-board the satellite. Since the satellite’s smooth orbital path and position is known
accurately at any instant, the sea surface topography relative to a reference ellipsoid can
be determined. The distance between satellite and sea surface is referred to as range. The
range must be measured to an accuracy of centimeters in order to derive geoid anomalies
down to wavelengths of 20 km and less.

The energy of the radar pulse reflected from the sea surface does not return to the
satellite as a sharp pulse, but is scattered over a considerable period of time. The power of
the return signal as a function of time is called a waveform. The waveforms are sampled in
3.03 nanosecond intervals (gates) corresponding to 45 c¢m in range. Examples of waveforms
resulting from calm and rough sea are displayed in Figure 7.1. This figure shows the change
in the waveform shape from impulsive to emergent. The ERS-1 satellite transmits 1020 radar
pulses per second. 51 consecutive returns are averaged on board the satellite and transmitted
to the receiver stations as 20 average waveforms per second, or one every 330 m along-track.
On reaching the sea surface, the radar pulse has an effective geodetic footprint between 2
and 7 km, depending on the sea state. Energy reflected at the center of the footprint returns
to the satellite earlier than energy reflected at the edges of the footprint. The power of the
returning pulse therefore increases from zero to some maximum value over a time interval of

about 6 to 60 nanoseconds. This period is referred to as the leading edge. The travel time is
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FIG. 7.1: Examples of ERS-1 return radar waveforms for calm (wave height less than 1 m)
and rough sea (mean wave height 11 m). The two waveforms differ in the slope of the leading
edge as well as in overall amplitude.

the time to the center of the leading edge. The steeper the leading edge, the more accurately
the center time of the leading edge can be estimated. The slope of the leading edge depends
not only on the diameter of the footprint but also on the roughness of the sea. The calmer
the sea, the steeper the leading edge. The subsequent decrease in power is referred to as the

trailing edge. The slope of the trailing edge is correlated with the surface wind speed.

7.2 Standard waveform analysis

ERS-1 satellite altimeter products currently used by the Geoscience community are derived
from on-board estimates of the return travel time. The ERS-1 on-board tracker uses a
model of the return waveform due to Brown (1977). Apparently, it had been planned to
reprocess the waveforms later (Tokmakian et al., 1994) using an algorithm of Challenor and
Srokosz (1989). The on-board tracking algorithm is based on a waveform model accounting
for three waveform parameters: the return travel time, the significant wave height, and
the backscattered power (related to the surface wind speed). Each waveform is analyzed

separately. The 20 Hz travel time estimates are combined to 10 Hz semi-elementary and
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FIG. 7.2: Tracking is equivalent to locating the center position of the leading edge. The
performance of a tracking algorithm can be verified by aligning the waveforms in such a way
that the estimated center of the leading edge is at a fixed gate (here gate 32 for OPR and
gate 31 for this study retracks). The superior quality of the retracked travel times leads to
a significantly reduced variance of the waveforms at the leading edge. Here, 80 consecutive
waveforms (4 seconds of data) are displayed. The model of equation 7.2 is indicated in red.

1 Hz averages. After applying tidal and atmospheric corrections, these are the European
Space agency (ESA) ERS-1 Ocean Product (OPR) geoid solutions incorporated in current

satellite gravity maps.

7.3 Improved travel time estimates from retracking

For the purpose of estimating geoid height, the only waveform parameter of interest is the
return travel time. Travel time estimates can be optimized by concentrating on the exact
location of the leading edge. Without attempting to explain the full shape of the waveforms,
we re-align the waveforms using a simplified waveform model M with

amp [

M(amp, o, 7;t) = 1+erf(o(t —31+17)), (7.2)

where amp is the amplitude of the waveform, o controls the slope of the leading edge, 7 is

the center time (lag) of the leading edge, t is the time along the waveform and erf is the error
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FIG. 7.3: Satellite on-board tracker (st) versus retracked geoid heights for two repeat tracks
with calm and very rough sea conditions from a low-signal-high-noise area (45° S, 130° E)
in the southern Pacific Ocean. Retracking significantly reduces the noise at intermediate
wavelengths. This is particularly obvious for the calm sea track. Offsets have been added to
separate the signals for clarity.

function. Both 7 and ¢ are measured in gates, and can be non-integer valued. An example

of this model curve is shown as a dashed line in Figure 7.2.

7.3.1 Misfit function

To find the optimum center positions 7, of a sequence of nw waveforms Wy (t), with £ = 1..nw,

we use an Lo-Norm misfit function E with

nw mazxgate Wk (@) — M(amp, 0, Tk, 7‘) ’
E(amp, 0,71, o Taw) = > 3 Wi (i) + of fset

k=1 i=mingate

(7.3)

The smaller the chosen value of of fset, the more significance is placed on the lower front
of the leading edge. With amplitudes around 400, a value of of fset = 50 produces good
results. Mingate and mazgate have to be chosen in such a way as to include precisely the

full leading edge, taking into account its varying center position and slope.
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7.3.2 Inversion

We find the minimum of the misfit function in equation (7.3) by a modified Gauss-Newton
algorithm, using the analytical first and second derivatives of E(amp,o, 71, ..., Tny). We
rescale the parameters amp and o by ¢’ = Ino and amp’ = (amp + ampefsset) /aMPfactor
so that amp’ and o’ have an expected value of zero at the solution and a unit perturbation
leads to an equal change in the misfit function for all parameters. The optimization for a
sequence of nw waveforms yields return travel time corrections 7y..7,,, which are added onto
the OPR return travel times. The improvement in the corresponding ranges is demonstrated
in Figure 7.2, which shows a sequence of consecutive waveforms, normalized on the OPR
estimate of the waveform onset. The retracked waveforms show a significant decrease in
scatter.

Figure 7.3 shows the improved quality of retracked geoid height estimates. Nevertheless,
retracking alone does not completely remove the high frequency noise. This noise is due
to the uncertainty of tracking waveforms which are sampled at a bin width of 3.03 ns,
corresponding to 45.45 cm in range. To reduce this high frequency noise, the practice until
now has been to compute 1 second averages of the 1/20 second range estimates. However,
the resulting 1 Hz ranges (e.g. Figure 7.9) are still noisy and have to undergo further low
pass filtering before they can be used in subsequent processing stages. The Ocean Product
(OPR) also provides 10 Hz semi-elementary averages, which are sometimes used instead of
the 1 Hz averages.

Instead of filtering the 20 Hz range estimates, we suppress noise already at the tracking
stage. This is achieved by using splines to model the geoid and by imposing smoothness

constraints on the polynomial coefficients of the spline.

7.4 Spline geoid solution

Instead of estimating travel times from individual waveforms, we invert a 20 second sequence
(132 km window) of 408 waveforms simultaneously. The k’th radar pulse (actually 51 pulses)
was reflected from the sea surface at wutc, universal time. The time stamp utc, can be
translated to the exact location of the satellite. Let y, be the corresponding (unknown) true
geoid height. Then y; can be expressed as a geoid polynomial with respect to universal time

utcy, as

ye = > a;Tj(utcy), (7.4)
=0

where T are the base polynomials of order j, n is the maximum order and a; are the
coefficients of the polynomial. We utilize Tj(xz) = cosjz, =z € [0,7] as base polynomials,
up to an order of n = 40. With a window size of 132 km we are thus able to represent

wavelengths down to 6 km, corresponding to the approximate across-track resolution of
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FIG. 7.4: Spline geoid solutions superimposed on the retracked geoid height estimates for
two repeat tracks. Offsets have been added to separate the two tracks for clarity. Fitting an
unconstrained polynomial directly to the retracked heights leads to unwanted oscillations in
the geoid solution. These oscillations can be removed by imposing a penalty for high power
in high order polynomial coefficients and fitting the thus constrained polynomial directly to
the waveform data. It is important to understand that the polynomial is not fitted to the
retracked travel times. Instead, the original waveforms are processed using a polynomial as
a continuous geoid model. Thus, we estimate 41 geoid polynomial coefficients instead of 408
individual travel times in each window. Polynomials in overlapping windows are combined
to a spline geoid solution.

combined Geosat and ERS-1 data. The 6 km cutoff is clearly visible in the spline spectrum
of Figure 7.5.
The geoid height 3, to be estimated is related to the OPR range z; by

Y = alty, — 2z + (3.03ns - ¢ - 7%) /2 (7.5)

where alty is the altitude of the satellite above the reference ellipsoid, ¢ is the speed of light
and 7% is the lag correction of the £’th waveform, measured in gates of 3.03 nanoseconds.

This gives an expression

2

= 303ms ¢ | %~ alte 2 0T (utcy) (7.6)

=0

Tk (o, -, Q)
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FIG. 7.5: Power spectra of along-track geoid solutions estimated using a 1140 km window.
The line with a slope of -5.5 depicts the expected power spectrum of the true geoid at short
wavelengths. Noise begins to dominate the Ocean Product geoid already at wavelengths
around 50 km. As reflected in these power spectra, this noise can be reduced significantly
by retracking the waveforms. A truly realistic geoid solution can be obtained by using a
polynomial spline and imposing spectral constraints on the polynomial coefficients in the
inversion.

relating the lag corrections of the waveforms to the coefficients of the geoid polynomial of
equation (7.4). In the previous section, equations (7.2) and (7.3) were utilized to compute lag
corrections for the OPR return travel times. Substituting 74 (ao, ..., a,) of equation (7.6) for
7 in equation (7.2) and using the same misfit function of equation (7.3), we can now optimize
41 geoid polynomial coefficients a; instead of 408 individual waveform lags 7. The optimum
lags 7 can then be computed from the optimum coefficients ay, ..., a,, using equation (7.6).
For the optimization, the coefficients again have to be rescaled in order to have an expected
value of zero near the solution, which is achieved by a simple linear transform. For 408
waveforms and a polynomial of degree 40, the modified Gauss-Newton algorithm converges
within 5 to 8 iterations. Solutions in adjacent windows are combined to a spline geoid

solution.

One of the advantages of this approach is that spectral constraints can be imposed in
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FIG. 7.6: Sample power spectra for 8 km free air (fa) and Bouguer anomaly (ba) grids of a
4000 x 4000 km? area covering the Siberian Craton. Grids in Lambert Conformal projection.
Due to the absence of topographic anomalies, Bouguer has less power at short wavelengths
than free air gravity. However, starting at about 50 km wavelength, isostatic compensation
reduces the power in long wavelength free air gravity anomalies. It is interesting to note
that both power spectra run parallel at short wavelengths and, hence, have the same scaling
exponent of ~ 4.5.

the optimization on the coefficients of the spline. If no constraints are imposed, the geoid
solution is smooth but tends to oscillate (Fig. 7.4). The corresponding power spectrum of
the along-track geoid (Fig. 7.5) has the typical curved shape of gravity power spectra at long
wavelengths (see Figure 7.6 and discussion in the following section), but turns white (=noisy)
towards short wavelengths. For a realistic geoid the spectrum should continue decreasing

with a slope that can be determined from non-satellite gravity grids as follows:

7.5 Expected power spectrum of the true geoid

A spectral model for the geoid can be inferred from the power spectra of free air gravity data.
Let us assume that the statistical properties of free air gravity over land (for which large,

accurate grids are readily available) are comparable to those of ocean gravity. Figure 7.6
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FIG. 7.7: Marine gravity power spectra for 8 km grids in Lambert Conformal projection
covering two areas of approximately 320 x 320 km? south of Japan and off the coast of
Norway.

shows the free air and Bouguer gravity power spectra of a 4000 x 4000 km? area of the
Siberian Craton in log-log scale. Starting at short wavelengths (right), both power spectra
increase towards long wavelengths (left) with a steady slope of 4.5, indicating self-similarity
of the gravity field with a scaling exponent of ’ygD = 4.5. Here, the index ”2D” indicates that
this is the scaling exponent of the 2D power spectrum, which is different from the 1D power
spectrum of profiles of the same data-set (Maus and Dimri, 1994). The scaling exponent
governs the overall smoothness of a random function. High values indicate a smooth function,

whereas low values indicate roughness. White noise has a scaling exponent of zero.

It is interesting to note that at short wavelengths free air and Bouguer gravity follow the
same scaling law, reflected in equal scaling exponents. The self-similarity of the gravity field is
probably due to a self-similar density distribution in the Crust (Pilkington and Todoeschuck,
1990; Maus and Dimri, 1996) combined with self-similar topographic anomalies (Chapin,
1996). Above wavelengths of around 50 km the slope of the power spectrum decreases,
indicating a reduced power for long wavelength gravity anomalies. This is probably due to

isostatic compensation of topography (Chapin, 1996), but could also indicate a limited depth
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extent of source, as has been shown for magnetic power spectra (Chapter 3).

A power spectrum similar to Figure 7.6 can be found in Chapin (1996, Figure 3) for the
free air gravity grid of South America produced at the University of Leeds. It has a slope of
around 4.7 at wavelengths below 100 km. Maus and Dimri (1996) find a scaling exponent
of 4.6 for the Bouguer gravity of the Paradox Basin Salt Anticline Region in Utah. These
values of 4.5, 4.7 and 4.6 are fairly consistent, leading us to the conclusion that the gravity

field over land has a scaling exponent of fygD ~ 4.5, be it free air or Bouguer.

7.5.1 Scaling exponent of ocean gravity

To investigate, whether the same scaling law applies to ocean gravity, we have analyzed two
8 km marine gravity grids, one off the Norwegian Coast and one south of Japan. With side
lengths of around 320 km the grids are much smaller than the ones for land gravity. Conse-
quently, their power spectra are less accurate. Nevertheless, they confirm a scaling exponent
of around 4.5 for ocean gravity (Fig. 7.7). Hence, it seems that there is no fundamental
difference in the smoothness of land and marine gravity fields.

From the scaling exponent of gravity one can derive the scaling exponent of the along-
track geoid as follows: With a scaling exponent of gravity 7§D, the scaling exponent of the
gravity potential is 3" = 77" + 2 (Maus and Dimri, 1994). With Brun’s formula (7.1) the
scaling exponent of the geoid is approximately equal to the 2D scaling exponent of the gravity
potential. Furthermore, using the general relationship v'” = 4*” —1 we get 7,0, = 72P +1.
Hence, in a first approximation, the spectrum of the along-track geoid in log-log scale is
expected to decrease with a slope of around 5.5 towards short wavelengths. This can be

utilized as additional information in the waveform retracking.

7.6 Enforcing a realistic geoid solution

The aim of this study is to improve the accuracy of geoid solutions derived from sea surface
height measurements. These geoid solutions are contaminated by two sources of noise. Beside
the error in sea surface height due to instrument error and atmospheric effects, the deviation
between sea surface height and geoid due to ocean dynamics is also noise in the context of
this study. Here, any deviation of a geoid solution from the true geoid is referred to as noise,
be it due to instrument error, ocean currents or imperfect tidal models.

Figure 7.5 shows the power spectrum of along-track geoid solutions for the Atlantic Ocean.
At wavelengths smaller than 50 km the Ocean Product turns white due to high frequency
noise. In contrast, the retracked geoid solution turns white only at wavelengths shorter than
30 km. The conventional way to deal with this noise is to average and filter the along-track
geoid heights until they have the desired power spectrum. Hence, an optimum travel time is

picked from each waveform, the travel times are converted to geoid heights and finally the
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FIG. 7.8: Power spectra of polynomial coefficients. The smoothness of spline geoid solutions
can be controlled via the power spectrum of its polynomial coefficients. A realistic geoid
power spectrum decreases with a slope of approximately -5.5 towards high coefficients.

heights are filtered. The disadvantage of this approach is that the uncertainty of each pick,
which also constitutes an important source of information, is lost prior to the filtering stage.
To extract maximum information from the measurements, a realistic geoid model has to be
fitted directly to the waveform data. As argued above, the power spectrum of a realistic

geoid decays with a slope of approximately 5.5 towards high wavenumbers in log-log scale.

7.6.1 Penalty for oscillating solutions

To enforce a steady slope of 5.5 at short wavelength powers, we introduce a penalty for spline
solutions with high power in high order polynomial coefficients (= short wavelengths). This
penalty is added to the misfit function in order to increase the misfit for oscillating solutions.
It can vary depending on sea condition to prevent over-damping of calm sea data. We add

a simple penalty to the misfit function of equation (7.3), given by

E'=E +damp-)_ da} j°, (7.7)

j=0
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FIG. 7.9: Ocean Product 1 Hz geoid heights versus this study’s spline geoid solutions for
three repeat tracks. Offsets have been added to separate the two kinds of solutions for
clarity. Our constrained spline geoid solution shows a remarkable degree of consistency in
the repeat profiles, even for the track with very rough sea (mean wave height > 10 m).

where damp and « are two parameters which are chosen by trial and error to enforce the
desired spectral density of the geoid. We utilized constant values of damp = 107% and o = 3.
With this penalty included in the misfit function, the coefficients of the spline polynomials
are optimized in two respects, simultaneously. The corresponding travel times have to match
the observed waveforms and the spectrum of the coefficients has to decrease with a slope
of 5.5 towards short wavelengths. The result of such an inversion is shown in Figures 7.4
and 7.9. The corresponding spectrum of coefficients is shown together with the spectrum of
the unconstrained inversion in Figure 7.8.

Our approach is designed to obtain the best possible geoid solution. In a similar way
one could estimate sea surface height variations due to ocean currents. One would require a
spectral model of these variations, subtract a geoid model from the sea surface heights and
invert the waveforms as described above. In this case, deviations of the geoid model from

the true geoid would be considered as noise.
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FIG. 7.10: Location of sections used for estimating along-track coherence. Only tracks for
which all 3 repeat tracks were present and free of instrument error were chosen. No data
was excluded for other reasons.

7.7 Coherence of repeat tracks

The spatial resolution of along-track geoid solutions can be evaluated by regarding the mean
squared coherence between repeat tracks (Marks and Sailor, 1986; Sandwell and McAdoo,

1990), defined by
fro(k)?
Jr(k) fu(k)’

where £ is the wavenumber, fry is the cross-spectral density and f7 and fi; are the individual

coh?(k) = (7.8)

spectral densities (power spectra) of tracks 7" and U. The coherence can be interpreted as the
correlation between two signals as a function of the wavelength. If, for a given wavelength,
the coherence is close to 1, the information in both signals coincides and features of this
wavelength are resolved. A coherence close to zero, on the other hand, indicates that the
information at this wavelength is inconsistent. Coherencies of repeat track geoid solutions are
close to 1 at long wavelengths and taper off to zero for short wavelengths. The wavelength
at which the mean squared coherence falls to below 0.5 can be considered as the spatial
resolution. It should be kept in mind, however, that resolution defined in this manner
depends on the relative strength of signal and noise, which varies from area to area. Yale,
Sandwell and Smith (1995) find a ERS-1 resolution of 50 km for a low-signal-high-noise
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FIG. 7.11: Coherence, estimated from pairs of repeat tracks over the Atlantic Ocean using
a 285 km window. The data is taken from three corresponding 42-orbit sequences of the
35-day multi-disciplinary phase.

area in the southern Pacific and 38 km for a high-signal-low-noise area at the Mid-Atlantic
Ridge. For shallow areas with strong short-wavelength gravity signal, such as the continental

margins, resolution may be even better.

7.7.1 Study area

To compare our geoid-solution against the Ocean-Product we used 42-orbit sequences of 3
corresponding repeat tracks from the 35-day exact repeat mission (multi-disciplinary phase).
We selected the Atlantic Ocean as a study area and dismissed data of latitudes greater than
60° to avoid errors due to sea ice. Waveforms over land, in ice tracking mode, or with
range, waveform, tracking or location error were excluded from the analysis. Finally, we cut
the along-track geoid solutions into corresponding sections in which all three repeat tracks
were present, Ocean Product as well as waveform data. From these sections (Fig. 7.10) the
coherence between tracks was estimated using a 285 km window. The result is shown in
Figures 7.11-7.13.
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FIG. 7.12: Coherence for all pairs with a mean wave height less than 2 m in both tracks.

7.7.2 Results

The overall coherence (Figures 7.11) shows that the geoid solution obtained by retracking
travel times of individual waveforms has a significantly improved resolution of 35 km over
the 41 km resolution of the Ocean Product. This resolution can be improved further to 31 km
by including a geoid spectral model at the tracking stage.

To investigate the influence of the sea state on geoid resolution, we have classified all
pairs of tracks into a calm group (Fig. 7.12) for which the mean wave height of both tracks
is less than 2 m, and the the complementary rough group (Fig. 7.13), for which at least one
of the tracks has a mean wave height above 2 m. The comparison shows that while our
retracked and spline geoid solutions are robust with regard to the sea state the quality of

the Ocean Product deteriorates to 47 km already at very moderate wave heights.

7.8 Conclusions

We have described a new approach towards ocean geoid estimation from satellite altimeter
waveform data. Earlier tracking schemes utilized complicated models attempting to explain

the entire waveform. Furthermore, each waveform was inverted separately, as if it were a
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FIG. 7.13: Coherence for the complementary group to Figure 7.12, namely all pairs with a
mean wave height of more than 2 m in at least one of the tracks. The absolute coherencies
should not be compared with the absolute coherencies in Figure 7.12 because they do not
cover the same area. The relative difference in coherence between curves in one plot, however,
demonstrates that the quality of the Ocean Product deteriorates significantly with increasing
wave height, in contrast to this study’s geoid solutions.

statistical event unrelated to the adjacent waveforms. Instead, we align a whole sequence of
waveforms simultaneously. A spline geoid model is fit to the sequence of waveforms in such
a way that the variance at the leading edge is minimized. By introducing a penalty for high
power in high order spline polynomial coefficients, the power spectrum of the spline solution
is forced to take on the shape of the true geoid power spectrum. The coherence of repeat
tracks shows a significant improvement in along-track geoid resolution from 41 km to 31 km.
The quality of our geoid solution is maintained at rough sea states, where an improvement
from 47 km to 31 km was achieved. This is particularly important for processing Geodetic

Mission data where, due to the absence of repeat tracks, a noisy track cannot be substituted.
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Chapter 8

On the parametrization of field
models for satellite magnetic data

Backus (1986) shows that the magnetic field on a sphere S(b) of radius b is uniquely
parametrized by three scalars g(6, ¢), k(0, ¢) and ¢(@, ¢), corresponding to internal toroidal,
external toroidal and poloidal electric currents through the surface of the sphere. A dipole
field is an example of a poloidal field and a circular current is an example of a toroidal
field. In applying this simple parametrization to satellite magnetic data, one has to take
into account that satellite orbits are elliptical, rather than circular, and decrease in radius
with the lifetime of the satellite. For example, altitudes range from 350 km to 550 km for
Magsat and from 650 km to 850 km for @Drsted. As pointed out by Olsen (1997), the above
parametrization is applicable to a spherical shell S(a, ¢) with a < r < ¢ if all currents passing
through the shell are purely radial. Representing g, k£ and ¢ as sums of spherical harmonics
then leads to a discretization which may be referred to as being of order zero in r. Using
such a discretization, Olsen (1997) inverted Magsat data estimating the radial components

of ionospheric current systems.

Since currents are primarily field-aligned at satellite altitude, Backus (1986) suggests to
substitute the toroidal field scalar g by the relative density « of field-aligned currents through
S(a,c) as a third parameter. Due to practical difficulties in implementing this scheme,
Olsen (1997) proposes a radial Taylor series expansion of the toroidal field scalar ¢, instead.
This requires an efficient definition of first, second and higher order radial contributions to gq.
Arguably, Olsen’s initial scheme is not optimal in this sense. In the following we therefore
propose an improved radial expansion scheme based on the presumed radial divergence of

ionospheric currents.
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8.1 First order radial expansion of the magnetic field
scalars

Making use of V - B = 0, the magnetic field is conveniently represented in spherical coordi-
nates (7,6, ¢) as

B(r,60,¢) =V x Ap(r,0,¢) + Aq(r, 0, 9), (8.1)

where A = @9y — (6/sin )0, is the surface curl, 6 and ¢ are local unit vectors of the co-
latitude and longitude, and p and ¢ are the Mie scalars of the poloidal and toroidal magnetic
field, respectively (Backus, 1986; Backus et al., 1996). The sources of the magnetic field are

electric currents J with

woJ(r,0,¢) = V x B(r,0,9) (8.2)
= V x Aq(r,0,¢) + A[-V?p(r,0, ¢)] (8.3)
I(r,0,8) = V x Ap(r,0,) + Ad(r, 0, 6), (8.4)

where p = q/uy and § = —V?p/py are the poloidal and toroidal current scalars. Making
assumptions on the radial divergence of ionospheric electric currents, we propose first, second
and higher order radial parametrizations of the poloidal and toroidal magnetic field scalars
p and q.

A satellite measures the three vector components of the magnetic field on an elliptical
orbit with rotating orbital axis, with the additional complication that the magnetic field is
not constant in time. Any inversion attempting to estimate more than three sets of scalar
parameters from these measurements is likely to face stability problems. The obvious choice
for a 3 parameter model is to quantify the internal poloidal, external poloidal and the toroidal

magnetic field by one parameter each.

8.1.1 First order poloidal scalar p

A consistent separation of the poloidal field into internal and external parts in the shell
S(a,c) is only possible with the assumption that there are no toroidal currents in S(a, c).
Then we can write the poloidal scalar p in terms of the traditional Gauss coefficients ¢;* and
k;* as

.0 =a3 > o (2) 4 ke (D)1 ar0.0 85)

=1m=—¢

where ;" are surface spherical harmonics in arbitrary normalization. Note that there is an
incorrect sign in the corresponding formula of Backus (1986, eq. 58d), reproduced in Backus
et al. (1996, eq. 5.3.15).
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8.1.2 First order toroidal scalar ¢

The toroidal field scalar ¢ on S(r) is fully determined by the radial component J, of the
current density J at S(r), as can be seen from eq. (8.29) below. Thus, the radial decay of
the toroidal field scalar ¢ can be inferred from the presumed radial decay of the radial current

density J,.. Electrical currents at satellite altitude are primarily field-aligned. Hence,

B(r, 0, ¢)
Ir0,6) = J(r0,6) =00 8.6
(0.0) = Jr0.0) g (86)

J J
V-] = B-.VZ + ~V-B. 8.7
B T B ®.7)

SinceV-J=0and V-B=0 ;

0=B-V-~. 8.8
B (8.8)

Thus, the ratio J/|B| can change only in directions perpendicular to the field lines. In other
words, the strength J = |J| of the current along a field line behaves in the same way as
the strength of the magnetic field. To first order, the magnetic field at satellite altitude is
dipolar. For a dipole field |B| oc 7~3v/1 + 3 cos?d. Consequently, for two locations ry and r;

on the same field line we have

_(ro\* [1+3cos?0;
) = (7“1) V 1+ 3cos26, I (xo). (8.9)
—_——
Q

To obtain the behavior of J, along a field line, we need to first derive the corresponding

relation for the tangential current density Jy. With

sin 6
Jo(r) = ——J(1), 8.10
o(r) V1 + 3cos?0 (x) (8.10)

we obtain the behavior along a field line as

Jo(ry) = 200 (@>3 Jo(To). (8.11)

sin 90 1

Along a field line the latitudes satisfy the relation (Siebert, 1965, eq. A 5.24)

sin®6;,

= 8.12
sin200 7'0’ ( )

which simplifies eq. (8.11) to
To

To(r1)? = (T—)s To(ro)2. (8.13)

1
Taking J? from eq. (8.9) and J from eq. (8.13) we can now infer the behavior of the radial

component J, as
T = T = ) 5
= <Q> Q*J(ro)* — (—) Jp(r0)?. (8.14)

1 1
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For small r; — rq we can neglect the shift in latitude along a field line, giving 6, ~ 6, and
@ ~ 1. Using this approximation in eq. (8.14) gives
ro 6 ro\ 5
Jr(rlv 0: ¢)2 ~ (T_O) J(?"(), 07 ¢)2 - (T_O> Ja(r()a 07 ¢)2 (815)
1 1
On average, the power of a dipolar vector field is split 2:1 between the radial and tangential
directions (Holme and Jackson, 1997, egs. 11-13). Denoting the average over the surface of

a sphere by (-), we then have

() = 2() = (%) (8.16)
Using (8.16) in (8.15) yields on average
5y~ () 3o 2
(10,07~ (2) (= 30) (rlro.0.6)") (8.17)
To 3 3 1
I(r,0,0) ~ (2) (5= 3= Jr(re,0,0) (818)
ps(ro,71)
motivating the assumption
a\? (3 r
Q(ra 07 ¢) - ¥(;> 5 - 2_ULQ(GI’ 07 ¢) (819)
pla,r)
which leads to the ansatz
() 12
q(r,0,9) = pla,m) Y > @"B"(0,9), (8.20)
{=1m=—¢

suitable for r/a < 3. One may object that (8.18) is not a good approximation near the
equator. Consider, for example, a hypothetical situation in which the current density is zero
everywhere except on a field line crossing the magnetic equator at r,,q, with 7o < rpe. < 71
Then, (8.18) gives J,(r1, 0, ¢) as some fraction of J,. (7, 8, ), while the true current density is
everywhere equal to zero on S(r1) with 71 > 7,,,,. However, real field-aligned current systems
are strong at high latitudes, and since J, = 0 at the magnetic equator, the equatorial regions
should anyway contribute little to the toroidal magnetic field. A test of (8.18) for a white

field-aligned current density distribution is given in section 8.3, below.

8.1.3 First order magnetic field model

Using Backus’ notation and omitting the arguments (r,6,¢) and (6, ¢) for clarity, equa-

tion (8.1) can be rewritten as

2
B — f*v;p V1a P 4 Aq (8.21)
Vip . 1 5
= rT — 0(;6,7"8017 + @&ﬁq) ¢( 8 . 10sp — 0pQ) (8.22)
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with T, 0 and q{) as the local unit vectors and surface gradient V, = rV —ro, = éag +
(¢/sin 0)d, and surface curl A = # x V; = ¢dy — (0/sin 0)d,;. With ansatz (8.5) and using
Vigy = —L+ 1B

) 00 V4 a +1 r V4
Vip=aY Y (+ngr (2) — ey (D) 167 (8.23)
—1m——t r a
and
00 V4 a 41 r l
orom=ay. 3o (2)  +kr () loasy (8.24)
=1m=—t r a

Using (8.23), (8.24) and ansatz (8.20) for ¢ in (8.22) finally gives

B = % Y f(t+ 1) (g)m-zk;” (2)5_1] By
— gy (%)m e (2)“]86, g+ 200 g, )

inf
L0487 ma am
]s(fTZQ — pla,7)q;"0s By }, (8.25)

where arguments (r, 6, ¢) and (6, ¢) have been omitted for B and (", respectively. For the
special case of 7 = a this equation reduces to the equations discussed in Backus et al. (1996,
p. 189-192).

8.1.4 First order electric currents

Having assumed that there are no toroidal currents in S(a, ¢), the remaining poloidal currents

in S(a,c) are

[L()J = VXA(]

2
_ fvlq Vla ,Tq
r r
A O ~ 1 _ 0
S PR S 9,4 (8.26)
r r sin 6 r
and using ansatz (8.20) for ¢ we have
0,rq 6a —r
_ 2
r 6ar — 212’ (8:27)
Vig = —4(l+1)q (8.28)
With (8.27) and (8.28) the currents (8.26) are
j=" OB+ 1) 8 +0 55 ¢46a—7“ ers
Hod = .=, ¢ ot (6a — 2r)sind Rz
(8.29)

where again arguments (7,6, ¢) and (0, ¢) for J and 5}* have been dropped.
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8.2 Higher order radial expansion

Due to the rotation of the principal axis of the elliptical orbit, a satellite samples the magnetic
field not only in the azimuthal but also in the radial direction. However, time variations of
the entire field render it difficult to actually extract the radial behavior of the field. The
situation will improve with the advent of additional satellites. A simultaneous inversion of
multiple data sets will provide additional field information in the radial direction and, thus,

may allow for the estimation of higher order model coefficients.

8.2.1 Higher order scalars for p

Including further scalars for p means to drop the previous assumption that there are no
toroidal currents in S(a, c). The radial behavior of a toroidal current component would have
to be inferred from the underlying physical cause. For an unknown cause, we can argue that
the surface of S(r) increases with 72, hence, the currents on this surface are likely to decrease
with 772 due to spherical divergence. From eqgs. (8.4) and (8.33) it can be seen that this

corresponds to adding a scalar to p which is constant in 7:

o0 l
pA(r,0,6) =ad. S p) 576, 9) (8.30)

l=1m=—¢

We then obtain an additional contribution to the magnetic field

2,2 .1 1
B - 1P —0-0,70p® — p———0,70,p? (8.31)
T T rsinf
00 0 . .1
= 0% % wl e+ 1) - 60, 57— d——s0, 7 (832)
Tt im—t sin 6

due to the additional electric currents
pd = —A(V*p?)
1
= —AT—Q(rﬁfrp@) +V2p?)

<~ ]_ A v%p(2)
= —(®% - sin 008¢) r?
g X A+ 1
= 5> > pﬁ,zr)n OL(L+1)0p By — ¢¥8¢6g” (8.33)
T e=1m——¢ sin @

For as yet unknown physical reasons it could turn out to be sensible to include further scalars

for p decaying more or less rapidly in r.

8.2.2 Higher order scalars for ¢

2 and 3. In the

hypothetical situation where data availability allowed for the estimation of higher order

The factor p(a,r) in approximation (8.19) has a decay rate between -
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scalars for ¢, one could substitute the single scalar ¢ « p(a,r) in (8.19) by several scalars

with decay rates centered around p(a,r). The first two scalars would then be ¢(* oc r—2 and
¢? o 7% with
) a2 9] l 1)
V0,0) = 5SS dhsre.o) (5:34)
=1 m=—
2 ¢S G o
q (Taea(b) = 7__32 Z QZ,mﬁZn(ea(ﬁ)a (835)
{=1m=—¢
contributing to the magnetic field by
@ a2 o0 ¢ a _0" . R .
BY = 2 z—z1 _quﬁ,m @&bﬁe + @0y By (8-36)
@ ad > 2 @ _é . R .
B® = 3 Y G | 08B0 + 905 - (8.37)
=, sin 6
The corresponding source currents can be derived using
Vig = —4(l+1)q (8.38)
a,rq 1) 1) 1)
LA SR X AN (8.39)
r T r T
0,rq? (2 2) (2
DN O L A S (8.40)
r T r r
in eq. (8.26), giving
(1) a2 ad : (1 2 m A m J) m
podV = 23T D Qo | R+ 1B + 00,5 + 0y (8.41)
=, sin 6
© - Uy 0 m 4 oo am o 2P o am
,U,()J = r—4 Z Z q&m —I‘E(f + 1)ﬁé + 2089@ + @84)@ y (842)
{=1m=—¢

where again the arguments (r, 0, ¢) and (0, ¢) for J and 5;* have been dropped.

8.3 Radial decay of a dipolar field-aligned electric cur-
rent system

In this section, we compare the true radial decay of a white dipolar field-aligned current
system with the decay predicted by approximation (8.18) for the coefficients of its spherical
harmonic expansion. We first synthesize a current density J on the sphere S(ry) with a
white spectrum in the band of spherical harmonic degrees 1-16. Here, we understand a
white spectrum in the sense of the definitions in Chapter 1.1. The white spectrum is gained
by generating random values for the spherical harmonic coefficients and normalizing these in

such a way that the total power spectral density is equal for each degree £. Then the current
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FIG. 8.1: Synthetic white noise current system, aligned to a dipole field. The exact spher-
ical harmonic coefficients of the radial current density at radius r; are plotted against the
corresponding coefficients at radius ry. The solid lines give the prediction according to
approximation (8.18).

densities J(rg, 0y, ¢,) are computed for the Gauss-Legendre quadrature points (6,, ¢,) by a
reverse spherical harmonic transform. The values at the angular locations (6,, ¢,) completely
define the coefficients of a spherical harmonic expansion up to a given degree. Taking the
radial current component J, (7o, 84, ¢,) and transforming forward gives the spherical harmonic
coefficients of the radial current density at S(rg). These coefficients are directly related to
the spherical harmonic expansion of the toroidal field scalar q on S(r¢), as can be seen from
eq. (8.29). To find the exact radial current component J, (71, 6,, ¢,) and thus the exact field
scalar ¢(r1,0,, ¢,) on S(r1) at a radius r; > rg, we follow the Gauss-Legendre quadrature
points (6, ¢,) from S(r;) down along the field lines into the points (0, ¢,) on the lower

sphere S(rg), using the relation

arcsin[, /¢ sin 6(r for 0 < 7 /2
0(ro) = [ 1 </ (8.43)
™ — arcsin, /1 sm0 (r1)] for 6 > m/2,

which follows from eq. (8.12). Then we compute the radial current component J,(ro, 0y, ¢;)

for these locations from the spherical harmonic expansion of J, on S(ry) and upward continue
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FIG. 8.2: Here, the coefficient ratio is normalized to the mean amplitude in each spherical
harmonic degree, according to eq. (8.45), and is then plotted against the degree. The solid
lines give the predicted ratio p;(ro,71), as defined in relation (8.18).

it along each field line into the Gauss-Legendre quadrature points (6,4, ¢,) on S(r1), using

7"0)3 cos 0,

!
ry/ cos Hg

T.(r1, 8, by) = ( Jo(r0, 0, 8)). (8.44)

The forward spherical harmonic expansion then gives the exact coefficients of the radial cur-
rent density on S(r1), which can be compared with the ones predicted from the coefficients
at S(ro) using approximation (8.18) for each individual spherical harmonic expansion coeffi-
cient. The exact expansion coefficients for J, on S(r;) are plotted against the coefficients on
S(ro) in Figure 8.1. The solid lines give the prediction according to approximation (8.18).
For a satellite at 400 km altitude the radial ratios of 1.2 and 1.6 correspond to radial sepa-
rations of 1350 km and 4000 km, respectively. For these large distances the approximation
is surprisingly good. To analyze the quality of the approximation for smaller radial separa-
tions, let us define the coefficient ratio, normalized to the mean amplitude in the spherical

harmonic degree, as

= JEm(ry) — py(ro, r1)JE™(ro)
Vais She I (ro))?
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FIG. 8.3: The coefficient ratio R of eq. (8.45) is displayed against the azimuth m/¢. Surpris-
ingly, the quality of the approximation (8.18) depends neither on the degree ¢ (see Fig. 8.2)
nor on the order m.

where p;(rg,71) is the ratio of J,(r1)/J, (o) predicted by approximation (8.18). In Figures 8.2
and 8.3 the ratio R of definition (8.45) is plotted against the spherical harmonic degree and
against the azimuth m/¢. It is interesting to see that the prediction error depends neither
on the degree nor on the azimuth.

The utility of approximation (8.18) is further scrutinized by plotting the deviation of the
predicted radial current density p;(ro,r1)J (70,0, ¢) from its true value J,.(r1,6, ¢) against

the height difference r; — ry. The relative root of the mean square (RMS) error

_ <[JT(T1’0ﬂ ¢) _pJ(TOarl)JT(T0ﬂ0a¢)]2>
B = \l AR (8.46)

can be computed directly from the spherical harmonic coefficients of the true and the pre-
dicted radial current densities. In Figure 8.4, the lower curve gives the error for p;(rg,71)
as defined in relation (8.18) and the upper curve for the crude approximation p;(rg,r1) = 1.
The prediction error of approximation (8.18) increases strongly to around 5% for a height
difference of 100 km, but then exhibits only a moderate further increase to 12% for 500 km

difference in height. In these examples, ry is taken as the mean Earth radius plus 400 km.
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FIG. 8.4: Root of the mean square (RMS) error of the radial current prediction
ps(ro,r1)Jp(ro) for S(ry), relative to the true RMS strength of J.(r;), computed using
eq. (8.46). For the upper curve the radial dependence of J, has been neglected, which
corresponds to setting p;(rg,71) = 1 in eq. (8.46)

In summary, Figures 8.1 to 8.4 show that the prediction according to approximation (8.18)
is correct on average. Errors are rather large for small radial separations but increase only
slowly with increasing 7y — rg. In particular, none of the spherical harmonic coefficients
experiences a change in sign. Hence, approximation (8.18) is likely to provide a simple and
fairly accurate way of dealing with field-aligned currents. It may be particularly useful for

the joint inversion of synchronous data from multiple satellites at different heights.

8.4 Discussion and conclusions

The interpretation of satellite magnetic data requires an efficient discretization of the mag-
netic field in the shell of measurements S(a,c). We need one set of parameters each for
the poloidal fields due to currents internal to S(a) and external to S(c). Backus (1986)
suggests to use a third parameter « for field-aligned currents through S(a,c). As a simple
alternative, we propose to expand the toroidal magnetic field scalar ¢ according to the mean

radial behavior inferred from a dipolar system of field-aligned currents. Comparing the exact
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radial behavior of the current density in a synthetic field-aligned current system with our
approximation, we find that the approximation is correct on average and surprisingly stable
for large radial separations. However, whether the ansatz is indeed useful in practice will
have to be verified on real satellite data.

Future synchronous measurements by multiple satellites will improve the spatial and
temporal resolution of the magnetic field. For such data one may consider extending the
model space to include poloidal fields due to toroidal currents in S(a, c), and higher order
toroidal field scalars. The spherical harmonic degree up to which to expand each of these
parameters depends on the scope of the investigation and the quality of the data. Two
important issues have not been addressed here. Ome is how to deal with the temporal
variation of the ionospheric current systems. The other is the problem of continuing the
Gauss coefficients ¢;* and k" in eq. (8.5) from satellite altitude down to the Earth’s surface,

which requires further models for the electric current systems in between.
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ALP94, 30, 34, 36
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associated Legendre functions, 13, 29
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auto-correlation function (ACF), 12, 53, 68
of white noise, 12
relation to spectrum, 12, 53
relation to variogram, 53-54, 68
azimuth, 10
in plane coordinates, 19, 54
in spherical coordinates, 13, 14
main field declination, 16
of a spherical harmonic, 127

of magnetic profiles, 54, 58

band-limited
self-similar spectrum, 43
white spectrum, 22, 43, 124
basis functions
normalization of, 13
spherical harmonic, 13
Bessel functions, 55
beta function, 52

Brun’s formula, 102

C89, 30, 34
Central Asia, 47
coherence, 114-116

continent/ocean difference
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in magnetization, 34-36

in topography, 33, 109-111
continental scale compilations, 34, 47
coordinates

horizontal polar, 54

plane, 18

spherical, 13
core field, 27
core-mantle boundary, 27
correlation function, see auto-correlation

function

Curie temperature, 38

depth, 35, 38-49

damping term, 24, 113
declination, 16
depth
bias from noisy data, 73
estimated versus drilled, 82, 98
non-uniqueness, 46, 71, 73
overshooting, 73
to bottom (DTB), 35, 38-49
to top, 50-100
detrending, 24, 6465
dikes, 74
dipolar main field, 17, 29, 120
diverging Fourier integral, 43, 53
DTB, 35

EGMO96, 23, 32, 33
electric currents, 118-129
EM resistivities, 81, 94

equivalent layer, 88



ERM, 101

ERS-1, 101

ESA, 104

estimator
general definition, 12
plane spectrum, 18-20
spherical spectrum, 13-15
total intensity spectrum, 16-18, 20
variogram, 63-65, 88
vector spectrum, 15, 20

Euler deconvolution, 86

expectation, statistical, 10

expected value, 10

ferromagnetic, ferrimagnetic, 38
field-aligned currents, 124
Fourier

amplitude, 19, 31

discrete transform, 19

FFT, 19, 50

transform, 19, 39, 53
Fourier-Stieltjes integral, 41
FSU, 34, 44-48

gamma function, relations for, 55
Gauss coefficients, 17, 119, 129
Gauss-Legendre quadrature points, 125
geoid polynomial, 106
geopotential model, 23
Geosat, 101
global field models, 23-27, 30-37
gradiometer, 66
gravity field

global spectrum of, 23, 32

local spectra of, 32-33, 109-111
great circles, 9
grid

cleaning of, 24

definition of, 18
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synthesis of a self-similar grid, 88

IGRF, 46
inclination, 16, 73
Indian Ocean, 32

infinite variance, 53

intensity of susceptibility variations, 51,

58, 70
inversion, 71, 106-113

isostatic compensation, 33, 109

Japan, 111

joint inversion, 128

Kalahari, 74
Khinchin’s formula, 12
KTB, 49

Kuiseb Dune Area, 94

Landsat, 74

locally homogeneous random function, 53

magnetic field
anisotropy, 43, 58, 70
autocorrelation, 39
declination, 54
global spectrum of, 24-27, 34-36
internal /external separation, 119
latitude dependence of, 34-35

local spectra of, 34-36, 44-49, 77-78

parametrization, 118-129
poloidal, 119
potential of, 24-26, 39
toroidal, 119
magnetization, 9, 39
induced, 34-35, 69-70
remanent, 69-70
sediment /basement ratio, 100
Magsat, 44, 118

mantle, 38

Mauersberger /Lowes spectrum, 9, 15, 20



Mie scalars, 119
misfit function, residual, 24, 72, 105, 112
model spectrum
for half-space, 51-52, 70
for slab, 36, 39-43
Moho, 38

multitaper series, 21

Namibia, 68, 74, 94

near-surface magnetization, 75-76, 85
NGDC, 34, 44

North America, 49

Norwegian Coast, 111

ocean geoid, 9, 101-117
ocean product (ERS-1), 104
Oersted, 118

OMAP, 74

OPR, 104

Pacific Ocean, 32, 105

paleochannels, 74, 83, 90

paramagnetic, 38

poloidal field, 118

power leakage, 24

power spectrum
azimuthally averaged, 11, 30, 43, 77
definition of, 10-12
discrete, 13, 19
gravity, 32-33, 52
magnetic, 34-36, 39-49, 51-52, 77
non-stationary, 10, 12, 30
of geoid profiles, 114
of ionospheric currents, 121, 124
of spline coefficients, 112
of the field vector, 15, 20, 34-36
of the potential, 15, 22, 24-26, 39
of the radial derivative, 15, 23, 32
of the total intensity, 16-18, 26, 40—49
plane, 1820, 31, 40-43
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potential field, 15-18, 20
radial, 10, 11, 30, 43, 77
reduction to the pole, 43
spectral density, 10, 39-43

radial /tangential power ratio, 16, 121
random

function, 41

measure, 41
regional geological features, 39
remanent magnetization, 40, 69
residual, misfit function, 24, 72, 105, 112
resolution

across-track, 107

along-track, 101

of basin depth, 98

of magnetic field model, 119, 129

of the DTB, 46

retracking of waveforms, 101-117

sample grids, 21, 32-37, 44-49, 109-111
satellite altimetry, 9, 32, 33, 101-117
scaling exponent, 36, 42, 52

gravity, 111

magnetic, 49, 52, 70, 90
Schmidt normalized basis, 13, 31
Seasat, 101
sedimentary basin, 39, 84
self-similar, 35, 39, 42, 70, 88, 110
Siberia, 33
South Africa, 44
spatial frequency, 28
spectral analysis, 68
spectral representation, 39
spectrum, see power spectrum
spherical harmonic basis functions, 13
spherical harmonic expansion, 13, 15, 34,

119

spherical shell, 118



spline, 106-109
statistical expectation, 10
statistically independent, orthogonal, 13,
18
surface curl, 119
surface gradient, 17, 122
susceptibility
apparent, 40, 69-70
tensor, 69
synthetic data, 22, 88-92, 124-128

tangential /radial power ratio, 16, 121
taper, 21
Taylor series expansion, 118
thickness, crustal, 35, 51
topography, 12, 57
gradients, 73, 90
land versus oceans, 33
toroidal field, 118
total intensity, 16, 51

UFM, 27

variogram
definition of, 53, 88
estimation, 63—65
of gravity field, 56
of magnetic field, 54-56
of self-similar grid, 88
relation to ACF, 53-54, 68
vector spectrum, 15, 20, 34-36

waveband
spherical harmonic, 22, 124
waveform, 102-103
model, 104
wavelength, 10, 12
of a spherical harmonic, 13
plane, 22

wavenumber
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of a spherical harmonic, 14
plane, 20

wavevector, 51

white noise, 12, 43
auto-correlation function, 12
band-limited, 22, 124





