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Abstract. Equatorial vertical plasma drift is an important consequence5

of the E and F region dynamos. Understanding the climatology of vertical6

drift can provide significant insight into ionospheric phenomena, such as the7

equatorial ionospheric anomaly. In this study we present the first empirical8

model of vertical plasma drifts observed by the JULIA (Jicamarca Unattended9

Long-term studies of the Ionosphere and Atmosphere) coherent scatter radar10

located in Peru. The model, called JVDM (JULIA Vertical Drift Model), de-11

scribes the local time, seasonal and solar flux behavior of the equatorial ver-12

tical drifts in the Peruvian sector. The model is valid from 0800 through 160013

local time, which is typically when JULIA makes vertical drift measurements.14

During very high solar flux conditions however, the model is unreliable be-15

fore 1000 local time, due to a lack of JULIA data. The model includes a cli-16

matology of the equatorial vertical drifts, as well as an estimate of the day-17

to-day variability, which can be significant. The day-time drifts typically peak18

between 1000 and 1200 LT and have amplitudes of 25-30 m/s ± 10 m/s. The19

model has been validated against the global empirical model of Scherliess20

and Fejer, with a total rms difference of under 4 m/s for 1000 to 1600 LT.21

This model will allow researchers to study daily variations in the equatorial22

electric field by subtracting the climatological mean. Model coefficients and23

software are available online at http://geomag.org/models and http://www.earthref.org.24
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1. Introduction

Equatorial vertical plasma drifts are driven by complex dynamo processes in the iono-25

spheric E and F regions. Neutral winds on the day-side cause positive and negative charges26

to accumulate at the dawn and dusk terminators respectively, giving rise to the equatorial27

electric field (EEF) [Heelis , 2004]. This field is eastward on the day-side and westward28

on the night-side. The EEF in combination with the earth’s magnetic field drives ion29

drifts which are typically upward and westward during the day-time and downward and30

eastward at night.31

Accurately measuring and predicting vertical plasma drifts is important for the study of32

many physical processes in the low latitude ionosphere, including the Equatorial Ionization33

Anomaly (EIA) [Appleton, 1954], upper F region electron density structures [Su et al.,34

1995], the equatorial electrojet (EEJ) [Forbes , 1981; Alken and Maus, 2007] as well as the35

forecasting of low latitude ionospheric weather. There have been previous studies to model36

quiet-time vertical plasma drifts using observatory data as well as satellite data. Scherliess37

and Fejer [1999] combined measurements from the Jicamarca incoherent scatter radar38

(ISR) with observations from the Atmospheric Explorer E (AE-E) satellite to produce a39

quiet-time empirical vertical drift model at all longitudes, seasons, local time and solar40

flux values. Fejer et al. [2008] produced a quiet-time empirical drift model of observations41

from the ROCSAT-1 satellite with global longitudinal coverage. There have also been42

other regional empirical drift models developed [Abdu et al., 1995; Sastri , 1996; Batista43

et al., 1996].44
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The Jicamarca Radio Observatory (JRO) (11.95◦S, 76.87◦W) near Lima, Peru has been45

measuring equatorial vertical plasma drifts at 150 km altitude since 1996 using the JULIA46

radar. JULIA is a coherent scatter radar which makes high-quality observations of Doppler47

150-km echoes which have been shown to yield good estimates of F region vertical ion48

drifts [Kudeki and Fawcett , 1993; Woodman and Villanueva, 1995]. JULIA measures 150-49

km vertical drifts during day-time hours at 5 minute intervals. JULIA data has enabled50

the study of many important ionospheric processes and is especially useful due to its51

near-continuous day-time observations of vertical drifts since 1996. However, there has52

never been an empirical model created for the JULIA data. The model of Scherliess53

and Fejer [1999] used the incoherent scatter radar at Jicamarca which normally operates54

in campaign mode and does not have continuous measurements at all local times and55

seasons. In this work we present the first empirical vertical drift model based on the56

JULIA coherent scatter radar. This model is of interest for studies of electrodynamic57

effects of atmospheric tides. It also provides the climatology of the equatorial plasma58

fountain, which is the source of the equatorial ionization anomaly. Last but not least, the59

model allows users of JULIA data to subtract the climatological mean in order to study60

daily variations in the eastward electric field.61

2. Climatological Mean Model Description

This empirical vertical plasma drift model was derived from JULIA coherent scatter62

radar data in the period of August 2001 through July 2008. Only quiet-time data (Kp63

≤ 3) were used, in the local time sector of 0800 to 1600 when JULIA data are typically64

available. Figure 1 shows the distribution of data over season, local time, and solar flux65
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level. There is a lack of data in the early morning (0800-1000 LT) during high solar flux66

at all seasons and also during June and December solstice at lower solar flux levels.67

The data selection yields a total of 46,669 drift measurements. Each drift measurement

is provided with an error estimate, enabling a weighted least squares fit. The model is a

function of local time, season and solar activity. We use the EUVAC flux index [Richards

et al., 1994] for the solar activity dependence which is defined as P = (F10.7+F10.7A)/2

where F10.7A is the 81 day average of F10.7. The functional form of the model is given

by

v(t, s, p) =
Nt∑
i=1

Ns∑
j=1

2∑
k=1

aijkBi(t)fj(s)p
k−1 (1)

where t is local time, s is season (day of year), and p is the EUVAC solar flux proxy68

defined above. The coefficients aijk are to be determined and the basis functions are given69

by70

Bi(t) = ith cubic B-spline with uniform knots from

8 to 16 LT (2)

fj(s) =

{
cos ( (j−1)πs

365.25
) j odd

sin ( jπs
365.25

) j even
(3)

B-splines [De Boor , 2001] were chosen for the local time dependence since there does71

not appear to be a more physically natural basis available. The model of Scherliess and72

Fejer [1999] accounted for seasonal variation by essentially binning their data into broad73

seasonal bins and performing separate fits for each season. The seasonal structure of the74

vertical drifts is complex and not fully understood, but does have a periodic structure,75

most easily observed with peaks during equinox and minima during solstice [Alken and76

Maus , 2007; Fejer et al., 2008]. The oscillatory seasonal basis functions were chosen due77
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to this observed periodicity. A linear fit was performed in the solar flux variable due to78

the known correlation between the vertical plasma drift and solar activity.79

The values of Nt and Ns were chosen by examining how the residual mean square

changes as a function of these parameters. The residual mean square is defined as

s2 =
1

n − p

n∑
i=1

wi [vi − v(ti, si, pi)]
2 (4)

where n is the total number of drift measurements and p is the number of parameters in80

the model (p = 2NtNs). The weights are wi = 1/(σ2
i + 1) with units of (m/s)−2 and the81

values σi are the given error estimates with the JULIA data (in m/s). The additive factor82

of 1 (m/s)2 in the denominator ensures numerically reasonable weights when σi is small.83

The vi are the JULIA drift observations and v(ti, si, pi) is the corresponding model value.84

As more basis functions are added to the model, eventually causing over-fitting to the85

data, s2 will approach the true value of the error variance σ2 [Draper and Smith, 1981].86

Figure 2 shows the residual mean square s2 as a function of Nt and Ns individually while87

holding the other value constant. In both plots the residual mean square decreases as the88

number of basis functions increases. This is most evident in the Ns plot where s2 decreases89

sharply as Ns increases. The Nt plot does not contain such a sharp decrease, however we90

do see the typical typical asymptotic behavior as over-fitting takes place and s2 approaches91

the true variance σ2. The Ns plot does not approach an asymptotic value of s2 within a92

reasonable choice of Ns, which is most likely due to the high degree of variability in the93

seasonal structure of the data. We therefore choose Ns = 11 which should adequately94

describe the seasonal changes of the JULIA vertical drift data. This choice represents95

sinusoidal basis functions up to degree 5 in the model, which will satisfactorily capture96
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the peaks during equinox and minima during solstice, as well as allow for differences97

between March and September equinox and other smaller seasonal structures.98

From the Nt figure alone, it is difficult to pinpoint the ideal value of the Nt parameter,

and so we computed the Mallows Cp statistic [Draper and Smith, 1981] for each of a set

of possible Nt values. The Mallows Cp is defined as

Cp = RSSp/σ
2 − (n − 2p) (5)

where RSSp is the residual sum of squares for a model with p parameters, σ2 is the best99

estimate of the actual error variance, and n is the number of data points. For an accurate100

model, Cp has an expected value of approximately p. We estimated the error variance101

as σ2 = 34.2 using the data in Figure 2 for Ns = 11 and computed the Cp statistic for102

several possible values of Nt. A plot of Cp vs p is given in Figure 3. Any model with a103

Cp value close to p passes the Cp test, and we see from the figure that the models with104

Nt ≥ 7, Ns = 11 lie on the line Cp = p. However the model with Nt = 7 was chosen to105

attempt to keep higher frequency artifacts in the local time dependence of the model to106

a minimum. This model has 154 parameters and a Cp of 138.3. The discrepancy between107

these two numbers is largely a result of the accuracy of the estimate of σ2.108

Once suitable values of Nt and Ns were selected for the model in Eq. 1, a weighted least109

squares regression was performed to minimize the residual sum of squares RSS = s2(n−p).110

The calculated value of the coefficient of determination is R2 = 0.32, indicating that the111

climatological model accounts for 32% of the variation about the mean in the data. This112

low figure clearly indicates the high degree of day-to-day variability in the equatorial113

vertical drifts.114
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Figure 5 shows, as a function of local time and season, the vertical drift values produced115

by the model as compared with the raw JULIA data and the Scherliess and Fejer model.116

The JULIA data plot in the middle was created by binning the dataset into half-hour117

bins in local time and 20 day bins in season, computing the mean of each bin, and then118

fitting a surface using a continuous curvature gridding algorithm [Wessel and Smith,119

1991] with a grid spacing of 0.3 hours in local time and 5 days in season. We see a120

very good agreement between the model and data. All major features of the vertical121

plasma drifts have been reproduced. The drift maxima during March and September122

equinox and minima during June and December solstice agree well. We also see that the123

local time behavior is well reproduced, with maxima near 1030-1130 LT. An important124

improvement in the JVDM model compared to the Scherliess and Fejer model is the125

allowance of differences between March and September equinox. The model of Scherliess126

and Fejer treated both equinoxes as identical but the JULIA data indicates slightly higher127

drift velocities during September and some asymmetries between the equinoxes at later128

local times. These seasonal differences are illustrated in Figure 4 which clearly indicates129

that the seasonal dependence of the Scherliess and Fejer model is insufficient to fully130

capture the JULIA seasonal drift structure. The JVDM seasonal basis functions allow for131

more accurate modeling of these features.132

We examined the weighted residuals

ri =
√

wi(vi − v(ti, si, pi)) (6)

and do not find any systematic trend which would indicate an insufficient number of terms133

in the model. There are a few outliers in the residuals which indicate data points that are134

not typical of the majority of the data. These could be due to errors in those observations135
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or unusual ionospheric conditions when the measurement was made. Since it is difficult136

to determine the exact cause of these outliers, we choose not to reject them out of hand137

in the analysis. The weighted mean of all residuals is 1.0 × 10−13.138

3. Model Validation

To validate the JULIA vertical drift model (JVDM), we compared it with the empirical139

quiet-time vertical drift model of Scherliess and Fejer [1999]. This model was based on140

equatorial vertical drift data from the incoherent scatter radar (ISR) at Jicamarca as well141

as observations from the Atmospheric Explorer E satellite. The model used Jicamarca ISR142

data averaged from about 300 to 400 km altitude. Although JULIA makes measurements143

at 150 km altitude, the comparison is meaningful since it has been found that vertical144

drift velocity gradients are small. Pingree and Fejer [1987] analyzed Jicamarca ISR data145

and found only small gradients within |0.05| m s−1 km−1. Fejer et al. [1995] also did not146

find significant gradients at F region altitudes using the AE-E satellite database.147

When computing the rms difference between the two models, defined as

ε =

√
1

V

∫
[v(t, s, p) − vSF (t, s, p)]2 dtdsdp (7)

where the integral is taken over local times 0800 to 1600, all seasons and all solar flux148

conditions, the result is 4.3 m/s. In the above expression, vSF is the vertical drift model of149

Scherliess and Fejer [1999] and v is the JULIA vertical drift model. V is the total volume150

of parameter space. The primary contribution to this rms difference is most likely the lack151

of JULIA data before 1000 local time, as well as the different seasonal dependence of the152

two models. Recomputing the rms difference for the local time sector 1000 to 1600 yields153

a value of 3.8 m/s. Computing the rms difference for 0800 to 1600 local time, but only up154
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to a maximum EUVAC index of 150 yields a value of 3.4 m/s. As mentioned above, the155

seasonal dependence of the two models was treated differently which is also contributing156

error, however these values are fairly reasonable and lead us to conclude this is a positive157

validation of JVDM with the understanding that there are inaccuracies at high solar flux158

conditions (> 150) before 10 am local time.159

4. Deviation Model

Since the equatorial vertical plasma drifts are highly variable from day-to-day, the

climatological mean by itself is not sufficient to describe them. We would therefore like an

estimate of the standard deviation from the climatological mean. Since each measurement

is taken at a specific local time, season and solar flux and is the only measurement for those

particular parameters, the only variability estimate available is the absolute deviation from

the mean

Di = |vi − v(t, s, p)|, (8)

which is not the same as the standard deviation. However, if the data is normally dis-

tributed, it can be shown that the absolute mean deviation is related to the standard

deviation by a constant:

D =

√
2

π
σ. (9)

Therefore we present a model of the day-to-day absolute deviation of the vertical drifts

from their climatological mean. This model is then used to show that the vertical drifts

are in fact normally distributed, so that the standard deviation can be estimated. The
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same functional form was used as for the mean model:

D(t, s, p) =
Nt∑
i=1

Ns∑
j=1

2∑
k=1

bijkBi(t)fj(s)p
k−1 (10)

with the same basis functions for each parameter. We performed a similar analysis to

that shown in Figure 2 and found the same values of Nt and Ns were suitable as for the

mean fit. We then performed an unweighted least squares fit to the model in Eq. 10. In

order to show that this model is meaningful, we computed “normalized drifts”:

v̄i =
vi − v(t, s, p)

σ(t, s, p)
=

vi − v(t, s, p)√
π
2
D(t, s, p)

(11)

which, if the mean and deviation models are correct, will produce a dataset normally160

distributed with zero mean and unit standard deviation. Indeed, the mean of the v̄i161

dataset is 0.057 and its standard deviation is 1.006. To show that the v̄i are normally162

distributed, we computed a quantile-quantile plot in Figure 6a which has normal quantiles163

on the horizontal axis with the v̄i quantiles on the vertical axis. Since most of these lie164

on the line y = x the normalized drift dataset is almost surely normally distributed, since165

other distributions would result in a deviation from this line. This indicates that our166

relation between the standard deviation and absolute mean deviation models is correct.167

This is further illustrated in Figure 6b which shows the probability density profile of the168

v̄i dataset along with an ideal normal distribution with zero mean and unit deviation.169

There is a very good agreement between the two probability functions. Figure 6c shows170

an example local time profile along with its ± standard deviation curves to illustrate the171

high day-to-day variability of the vertical plasma drifts from their climatological mean.172
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5. Conclusion

We have presented the first empirical model of vertical plasma drifts measured from173

150-km JULIA radar echoes. The model includes two components, one for the climato-174

logical mean as a function of local time, season and solar activity, and one which provides175

an estimate of the day-to-day variability of the drifts, as a function of the same param-176

eters. The model has been validated against the global empirical model of Scherliess177

and Fejer [1999] with good agreement. This model also incorporates for the first time178

the complicated seasonal structure of the drifts, especially the differences between March179

and September equinox which are not represented in the model of Scherliess and Fejer.180

Model coefficients and software are available online at http://geomag.org/models and181

http://www.earthref.org.182
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Figure 1. Local time profiles of JULIA quiet-time (Kp ≤ 3) vertical drifts for low,

medium and high solar activity and different seasons.
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function of season. An EUVAC index of 80 was used for the model outputs and the

JULIA data was selected for EUVAC < 100 and with a local time window of ± 1/2 hour
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Figure 5. Scherliess and Fejer model output (left), raw JULIA vertical drift data

(middle) and JULIA Vertical Drift Model output using EUVAC index of 80 (right).
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Figure 6. (a) Quantile-quantile plot with normalized drift quantiles vs normal quantiles.

(b) Probability density function of normalized drift data along with ideal normal density

profile. (c) Vertical drift local time profile (solid) with +/- standard deviation curves

(dashed) for March equinox and EUVAC index of 100.
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