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Main Field Total Intensity (F)
Contour interval: 1000 nT.

Mercator Projection.
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Contour interval: 5 nT / year, red contours positive change; blue negative change; green zero change.
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Core field modeling: basis functions

* Qutside sources, the magnetic field is a potential field:
B =-VV

* The potential can be expanded in spherical harmonics:
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a =6371.2 km (assuming the Earth is spherical)

* Time-varying Gauss coefficients are often represented using B- splines:
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(Notations from Jackson et al., 2000)



Core field modeling: regularization

The objective function to be minimized is often the sum of the least-
square fit of model to data and a norm measuring model complexity:

Om) = [y—f(m)]"C, [y —f (m)| + m C'm

C, is the data covariance matrix (assuming a Gaussian error distribution)
C_ is a damping matrix such that Cp,' =AS™ +uT™*
Example of a spatial norm (minimum ohmic heating):
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Example of a temporal norm (minimum acceleration):
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Downward continuation

e Assuming the mantle is an electrical insulator, the model calculated at the
Earth’s surface can be downward continued to r = ¢ = 3485 km.

* The radial component is the only one continuous through the core-mantle
boundary (CMB).
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* Higher degree (small scale) harmonics
are amplified the most.
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* The core field spectrum is flat at the CMB.
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The field at the core surface

B, (UT)
in 1990
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Main characteristics

High-latitude flux bundles
— Two in each hemisphere
— Responsible for the dipolar surface field

Reversed flux patches
— Largest under the South Atlantic
— Responsible for the South Atlantic Anomaly at the surface

Low latitude wave trains

Active Atlantic sector / quiet Pacific sector
— More and larger field concentrations under Atlantic
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Secular variation
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Fig. 10. Annual mean values of declination, 15411994, reduced to the Chambon-la-Forét observatory.

(Alexandrescu et al., JGR, 1996)
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Westward drift

http://jupiter.ethz.ch/~cfinlay/gufm1.html



Westward drift (at the core surface)
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Dipole decay
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North magnetic pole drift
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The North magnetic pole drift toward g {

Russia has accelerated over the 1990s. Ly “Q» ,
Caused by a localized acceleration at the o E L

core surface under Siberia

70

surveys
gufm1 :
50l cma |

- CHAOS-2| :

04+ .......... SRR .......... _

60

300 R R ]
10b SR

Total radial secular
change (nT/yr) from
1989 to 2002

: = : :
OF —— — PP, o

-10 i i i i
1850 1900 1950 2000

(Chulliat et al., Eos, 2010) 17



dY/dt [nTiyr]

Geomagnetic jerks / acceleration pulses

fast waves in the
equatorial region.
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Millennial changes
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Relative palaeointensity

Reversals and excursions
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Chrons and superchrons
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Magnetic induction equation

Ohm’s law in @ moving, electrically conducting medium:
7= o(B + iixB)
Combining Ohm’s law with Maxwell equations yields:
0B
E e

vx (X B)|+nv2B

Induction term Diffusion term

To have a dynamo, the work done by the flow on the magnetic field must
overcome Ohmic dissipation.

[Vx(iixB)| UL

R,, ~ 300 for large

Magnetic Reynolds number: -
|'7V BI 1 scale core flows
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Rotating convection

Energy sources: Earth’s cooling, light elements released by inner core
crystallization, radioactive elements in the core, tides.

Navier-Stokes equation:

d )
po(a—;l +u-Vu+P22 xu|)|=—Vp+p'g+) x BH ppvV-u

Coriolis force Lorentz force

The Coriolis force has a stabilizing influence on the flow: flows tend to
become 2D in the direction of rotation (geostrophic and quasi-geostrophic
flows) => columnar convection

The Lorentz force has a similar effect in the direction of the magnetic field.
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Numerical simulations of the geodynamo

a NORMAL POLARITY b POLARITY REVERSAL IN PROGRESS c REVERSED POLARITY

e 1995: first 3D simulation reproducing a reversal (Glatzmaier & Roberts)
* Today: several characteristics of the observed field are reproduced, but
there is still no satisfactory description of turbulent small-scale flows
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(Finlay et al., Nature Comm., 2016)



Torsional oscillations

Azimuthal oscillations of rigid
cylindrical surfaces aligned with the

rotation axis. &) Q

A special class of Alfven waves in a
rapidly rotating spherical geometry
(restoring force is magnetic).

Period depends crucially on the
magnitude of the radial field.

Recent observations support fast

waves of period ~ 6 yrs and radial
field ~ 2 mT.

L

Have a measurable effect on LOD

. L. ] (Finlay et al., SSR, 2010)
variations (core-mantle coupling).
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Is the top of the core stably stratified?

Recently, first-principle calculations
lead to an upward revision of the
thermal conductivity of the core.

Would support the existence of a
(subadiabatic) stably stratified layer
at the top of the core.

Supported by seismic data analysis.

Consequences for geomagnetism are
still unclear, but

— 60 yr fluctuations could be explained by
MAC waves in the layer

— Fast (6 yr) equatorial waves (recent jerks)

could be explained by magnetic Rossby
waves

(Buffett, Nature, 2014)
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Self-assessment questions

What are the main features of the core field at the core-mantle
boundary?

By how much did the axial dipole decrease over the past ~150
years and is this decay rate unusual?

What are the fastest observed variations in the core field?
How does the Earth’s rotation affect core dynamics?

What would happen if flows in the core suddenly stopped?



